
Pro Windows PowerShell

■ ■ ■

Hristo Deshev

Deshev_940-3FRONT.fm Page i Monday, January 28, 2008 2:23 PM

Pro Windows PowerShell

Copyright © 2008 by Hristo Deshev

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-940-2

ISBN-10 (pbk): 1-59059-940-3

ISBN-13 (electronic): 978-1-4302-0546-3

ISBN-10 (electronic): 1-4302-0546-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Tony Campbell
Technical Reviewer: Jon Rolfe
Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell,

Jonathan Gennick, Kevin Goff, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Sofia Marchant
Copy Editor: Heather Lang
Associate Production Director: Kari Brooks-Copony
Production Editor: Laura Cheu
Compositor: Susan Glinert Stevens
Proofreader: Linda Seifert
Indexer: Julie Grady
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley,
CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

Deshev_940-3FRONT.fm Page ii Monday, January 28, 2008 2:23 PM

iv

Contents at a Glance

About the Author . xvii

About the Technical Reviewer . xix

Acknowledgments . xxi

Introduction . xxiii

■CHAPTER 1 Objects and Object Types . 1

■CHAPTER 2 Controlling Execution Flow . 33

■CHAPTER 3 The Object Pipeline . 55

■CHAPTER 4 Working with Script Blocks . 69

■CHAPTER 5 Working with Functions . 87

■CHAPTER 6 Command Aliases . 107

■CHAPTER 7 Providers . 127

■CHAPTER 8 Script Files . 139

■CHAPTER 9 Error Handling and Debugging . 155

■CHAPTER 10 Signing Scripts . 197

■CHAPTER 11 The Shell Environment and Its Configuration 219

■CHAPTER 12 Extending the Type System . 237

■CHAPTER 13 Getting Help . 253

■CHAPTER 14 Taming Processes and Services . 275

■CHAPTER 15 Input and Output . 285

■CHAPTER 16 Monitoring Your System . 297

■CHAPTER 17 PowerShell and the World Wide Web . 315

■CHAPTER 18 Sending E-mail . 349

■CHAPTER 19 Talking to COM Objects . 367

■CHAPTER 20 Managing Windows with WMI . 395

■CHAPTER 21 PowerShell Community Extensions . 417

Deshev_940-3FRONT.fm Page iv Monday, January 28, 2008 2:23 PM

v

■CHAPTER 22 PSEventing: .NET Events in PowerShell . 449

■CHAPTER 23 Enhancing Tab Completion with PowerTab 461

■INDEX . 473

Deshev_940-3FRONT.fm Page v Monday, January 28, 2008 2:23 PM

vii

Contents

About the Author . xvii

About the Technical Reviewer . xix

Acknowledgments . xxi

Introduction . xxiii

■CHAPTER 1 Objects and Object Types . 1

The Extended Type System . 1

Accessing Object Properties . 2

Using Object Methods . 2

Object Adapters. 3

Type Extensions . 5

Built-in Types . 8

Strings and String Operations . 8

Numeric Types . 14

Arrays and Collections . 16

Dictionaries and Hash Tables . 21

Type Literals . 25

Type Conversion . 26

Accessing Static Members . 30

Summary . 31

■CHAPTER 2 Controlling Execution Flow . 33

Conditional Expressions . 33

Comparing Values. 34

Implicit Type Conversions . 36

Logic and Bitwise Operations . 37

Boolean Conversions . 41

The Power of String Conversions . 42

Collections and Conditional Expressions . 43

Deshev_940-3FRONT.fm Page vii Monday, January 28, 2008 2:23 PM

viii ■CO N T E N T S

Branching Instructions . 44

Simple Branching: if/else . 44

Multiple Branches and the switch Statement 45

Loops: Repeatedly Executing Blocks of Code . 48

The Simplest Loop: while . 48

Loops and Counters: for Loop . 50

Executing Actions on All Objects in a Collection: foreach Loop 50

Controlling Loop Execution: break and continue Statements 51

Summary . 54

■CHAPTER 3 The Object Pipeline . 55

Text-Based Pipelines . 55

Object-Based Pipelines . 56

Processing Collections Using ForEach-Object . 59

Filtering Collections Using Where-Object . 60

Adding or Deleting Properties Using Select-Object 60

Sorting Collections . 62

Pipeline Tees . 63

Grouping Objects . 64

Gathering Collection Statistics . 65

Detecting Changes and Differences Among Objects 65

The Object Pipeline and Functional Programming 66

Summary . 67

■CHAPTER 4 Working with Script Blocks . 69

Defining Script Blocks . 69

Passing Parameters and Returning Values . 71

Processing Pipeline Input . 75

Variable Scope . 77

Invoking Strings as Expressions . 83

Script Blocks as Delegates . 85

Summary . 86

■CHAPTER 5 Working with Functions . 87

Defining Functions . 87

Function Internals . 88

Function Parameters . 89

Passing Parameters by Reference . 91

Deshev_940-3FRONT.fm Page viii Monday, January 28, 2008 2:23 PM

■C ON TE N TS ix

Returning Values . 93

Scoping Rules . 94

Filters . 97

Functions and Script Blocks . 101

Implementing New Control Structures . 101

Script Blocks as Strategies . 104

Summary . 106

■CHAPTER 6 Command Aliases . 107

Working with Aliases . 107

Creating Aliases . 108

Modifying Aliases . 110

Exporting and Importing Aliases . 111

Aliasing Tips, Techniques, and Pitfalls . 115

Name Clashes . 115

Complex Aliases . 117

Removing Broken Aliases . 118

Built-in Aliases . 119

cmd.exe Look-alikes . 120

UNIX Look-alikes. 121

Convenience Aliases. 123

Summary . 125

■CHAPTER 7 Providers . 127

Enumerating Providers . 127

Drives . 129

Drive Scope . 131

Navigating to Drives . 132

Provider Capabilities . 134

Basic Provider Capabilities . 134

Drive Providers . 134

Item Providers . 134

Item Container Providers . 135

Navigation Providers. 136

Item Content Providers. 136

Item Property Providers . 136

Dynamic Item Property Providers . 137

Item Security Descriptor Providers . 137

Summary . 137

Deshev_940-3FRONT.fm Page ix Monday, January 28, 2008 2:23 PM

x ■CO N T E N T S

■CHAPTER 8 Script Files . 139

Creating Scripts . 139

Invoking Scripts . 140

Passing Parameters . 142

Returning Values . 146

Executing PowerShell Scripts from Other Environments 148

Developing and Maintaining Script Libraries . 149

Dot-sourcing as a Means to Include Script Libraries 150

The Library Path Problem . 150

Summary . 154

■CHAPTER 9 Error Handling and Debugging . 155

Handling Errors . 155

Common Error-Handling Parameters . 157

Trapping Errors . 160

Capturing Nonterminating Errors . 170

Raising Errors . 172

Debugging Your Code . 177

Print Debugging . 178

Stepping Through Scripts and Breaking Execution 188

Tracing Script Execution Details . 190

Summary . 196

■CHAPTER 10 Signing Scripts . 197

How Code Signing Works . 197

Guaranteeing Script Integrity . 198

Certifying the Origin of a Script . 198

Managing Certificates . 199

Creating a Self-Signed Certificate . 202

Creating a Certification Authority Certificate 202

Issuing a Code-Signing Certificate . 206

Signing Scripts . 211

Running Scripts on Other Machines . 215

Summary . 217

Deshev_940-3FRONT.fm Page x Monday, January 28, 2008 2:23 PM

■C ON TE N TS xi

■CHAPTER 11 The Shell Environment and Its Configuration 219

Shell Hosts . 219

User Profile Scripts . 223

Settings for All Users and All Shells . 223

Settings for All Users Using a Specific Shell 224

Settings for a Specific User and All Shells . 224

Settings for a Specific User and a Specific Shell 224

Working with Saved Console Settings . 226

Changing the Prompt Settings . 228

Tab Expansion: How Command Completion Works 231

Summary . 235

■CHAPTER 12 Extending the Type System . 237

Modifying Objects and Types . 237

Adding Members to Single Objects. 238

Adding Members to All Instances of a Class 244

Extending Object Formatting . 247

Creating Our Own Views . 249

Summary . 252

■CHAPTER 13 Getting Help . 253

The Help System . 253

The Basics . 254

Parameter Details . 256

Advanced Techniques . 258

Getting Command Information . 264

Getting Information About Objects . 266

Using the Internet to Get Help . 268

Summary . 273

■CHAPTER 14 Taming Processes and Services . 275

Working with Processes . 275

Listing Processes: Getting the Big Picture . 276

Starting and Stopping Processes . 277

Processes and Their Windows . 278

Process Modules: On What Libraries Does This
Baby Depend? . 279

Deshev_940-3FRONT.fm Page xi Monday, January 28, 2008 2:23 PM

xii ■CO N T E N T S

Getting Information About a Program’s Publisher 280

Setting Process Priority . 280

Administering Services . 281

Starting and Stopping Services . 282

Configuring Services . 283

Analyzing Service Dependencies . 283

Summary . 284

■CHAPTER 15 Input and Output . 285

Reading Content . 285

Writing Content . 288

Content Encoding . 289

Getting Byte Content. 290

Different Unicode Encodings . 291

Extracting Data from Text . 294

Finding Matches for a Regular Expression. 294

Finding String Occurrences Inside Files . 295

Summary . 296

■CHAPTER 16 Monitoring Your System . 297

Working with the Windows Event Log . 297

Reading from the System Event Logs . 298

Writing to the Event Log . 302

Performance Counters . 306

Consuming Counter Data . 307

Monitoring Programs . 309

Summary . 313

■CHAPTER 17 PowerShell and the World Wide Web 315

Laying the Foundation . 315

Fetching Files from the Web . 316

Setting Connection Options and Debugging
Connection Problems . 318

Testing and Validating Web Sites . 328

Test-Url: Verifying a Page’s Existence . 328

Checking If a Page Contains Broken Links 330

Deshev_940-3FRONT.fm Page xii Monday, January 28, 2008 2:23 PM

■C ON TE N TS xiii

Working with News Feeds . 332

Getting Feeds . 333

Calling Web Services . 338

Calling Web Services Using HTTP GET Requests 338

Calling Web Services Using HTTP POST Requests 340

Calling Web Services Using the SOAP Protocol 342

Handling FTP Transactions . 345

Downloading Files from an FTP Server . 345

Uploading Files to an FTP Server . 346

Summary . 347

■CHAPTER 18 Sending E-mail . 349

Using System.Net.Mail . 349

Building a Reusable Script . 350

Configuring Recipients . 352

Working with Message Headers . 355

Multipart Messages . 357

Message Views . 357

Attaching Files to Messages . 359

Embedding Media in Messages . 361

Putting It All Together . 363

Summary . 365

■CHAPTER 19 Talking to COM Objects . 367

How COM Works . 368

How PowerShell Supports COM . 368

Scripting Programs Through Their COM Interfaces 369

Automating Microsoft Word . 369

Scripting Microsoft Excel . 378

Driving Internet Explorer . 384

Windows Script Host Code Interoperability . 389

Evaluating Code . 390

Exposing Objects from MSScriptControl . 392

Summary . 393

Deshev_940-3FRONT.fm Page xiii Monday, January 28, 2008 2:23 PM

xiv ■CO N T E N T S

■CHAPTER 20 Managing Windows with WMI . 395

A Brief History of WMI . 395

WBEM and WMI Components . 396

The Common Information Model. 396

Network Transport . 397

Object Discovery . 397

PowerShell’s WMI Support . 398

Get-WmiObject: The WMI Query Tool . 399

Language Support for WMI Objects . 401

Exploring CIM Classes and Objects . 404

Getting a List of Classes and Namespaces 404

WMI System Properties . 406

Querying Hardware Devices . 407

Getting Information About Software . 408

Operating System Updates . 408

Installed Programs . 409

The Network Configuration . 411

Generating WMI Code . 411

Scriptomatic . 412

Summary . 414

■CHAPTER 21 PowerShell Community Extensions . 417

Installation and Configuration . 417

Tab Expansion . 418

Editing Configuration Files . 418

Getting Help . 419

File System Utilities . 421

Navigation Helpers . 421

NTFS Helpers. 422

Compressing and Archiving Files . 424

Network Utilities . 425

Executing Processes and Commands . 427

XML Tools . 430

Working with Image Files . 435

Clipboard Helpers . 437

Deshev_940-3FRONT.fm Page xiv Monday, January 28, 2008 2:23 PM

■C ON TE N TS xv

New Providers . 440

Reading from the .NET Global Assembly Cache 440

Exploiting the Internet Explorer Feed Store 441

Manipulating Windows Active Directory . 443

Utility Applications . 446

Summary . 448

■CHAPTER 22 PSEventing: .NET Events in PowerShell 449

Introducing PSEventing . 449

Event-Handling Mechanics . 450

FileSystemWatcher: A Real-World Example . 451

Monitoring Entries Written to the System Event Logs 452

Handling WMI Events . 454

Detecting If Our Script Has Been Terminated by the User 456

Using Script Blocks As Event Handlers . 457

Summary . 459

■CHAPTER 23 Enhancing Tab Completion with PowerTab 461

Installation . 462

How PowerTab Works . 463

Data Grid Pop-up Windows . 466

Configuring PowerTab . 467

The IntelliSense Completion Handler . 468

The Tab Expansion Database . 470

Summary . 471

■INDEX . 473

Deshev_940-3FRONT.fm Page xv Monday, January 28, 2008 2:23 PM

xvii

About the Author

■HRISTO DESHEV has been a software developer, a team leader, and a product manager for Telerik,
the leading vendor of user interface components (http://www.telerik.com). For the past several
years, his focus has been on creating rich and, at the same time, robust and reliable web and
desktop components running on the Microsoft .NET platform. A major goal for him and his team
is to predictably deliver working software—applying agile software engineering practices to
create rock-solid solutions targeting all modern web browsers and supporting multiple Visual
Studio .NET versions.

Hristo is a reformed UNIX fanatic who now runs Windows and tries to apply his scripting
skills and experiences to the Microsoft platform. He is also a tool freak: anything that can help
automate a task—be it a scriptable utility or a full-blown scripting language—is a welcome
addition to his toolbox. PowerShell has been a passion of his since its early unofficial releases
due to its ease of use and almost incredible ability to automate all Windows-related tasks without
needing other tools.

You can reach Hristo through his blog at http://weblogs.asp.net/hristodeshev/.

Deshev_940-3FRONT.fm Page xvii Monday, January 28, 2008 2:23 PM

xix

About the Technical Reviewer

■JON ROLFE has been an IT professional for more than 12 years and is currently a senior solutions
architect for one of the world’s largest IT services companies. He specializes in designing secure
Microsoft-based enterprise architectures for clients in the United Kingdom’s public sector and
large blue-chip companies. During the course of his career, he has gained extensive experience
at all stages of the IT life cycle, including enterprise architecture design, software development,
rapid system deployment, and large enterprise systems support. Although he specializes in
Microsoft technologies, Jon also has an interest in other technologies including Linux and wrote
the book Using Ubuntu Linux (Bernard Babani, 2007).

When not working, Jon has an active interest in digital photography, follows motor
sports, and enjoys mountain biking and skiing. He can be contacted through his web site
at http://JonRolfe.com.

Deshev_940-3FRONT.fm Page xix Monday, January 28, 2008 2:23 PM

xxi

Acknowledgments

I still find it hard to believe that I wrote an entire book! It has been an enjoyable project that
was also quite formidable and downright hard. I would never have done it all on my own, without
the huge amounts of help I got from many people.

First, I would like to thank the entire Apress team that guided me through the process:
Tony Campbell for providing important input and valuable feedback on the content, Sofia
Marchant for being so flexible with my sometimes late chapters, Heather Lang for her extraor-
dinary ability to turn my often unreadable writings into well-thought-out text. Jon Rolfe deserves a
special mention here; he has been an awesome technical reviewer. He not only spotted a host
of problems with the sample scripts but was keen to provide solutions and improvement ideas;
thus his efforts became one of the most important factors in getting this book done.

I would also like to thank the Microsoft PowerShell team for creating such a wonderful product.
Being a long-time UNIX user, I have been disappointed by the primitive Windows command line
shell. With PowerShell, this is no longer the case.

The PowerShell community deserves special recognition too. The wealth of information
and thoughtful discussions on blogs and online forums has been an incredible inspiration
when writing this book.

Last, but not least, I am personally thankful to the people behind the open source tools
covered in the book: Keith Hill and the numerous contributors to the PowerShell Community
Extensions project; Marc van Orsouw, the creator of the PowerTab tab completion extension;
and Oisin Grehan, the man behind the PowerShell Eventing Library and many other PowerShell-
related open source projects. You guys rock!

Deshev_940-3FRONT.fm Page xxi Monday, January 28, 2008 2:23 PM

xxiii

Introduction

I remember the first time I got to play with Windows PowerShell—I had some spare time on my
hands, and after reading a blog post, I quickly set off to download the unofficial pre-release bits
that were available at the time. I originally had very low expectations about the tool—all I wanted
was a shell that is up to par with its UNIX cousins. Boy, was I wrong! The moment I learned
about object pipelines, I knew this tool was going to change the way I think about automating
tasks on Windows. Fast forward a couple of months, and here I am, so much in love with Power-
Shell that I even wrote a whopping 400-page book about it.

Why Another Book on Windows PowerShell?
As much as I like PowerShell, its plain-console looks make it very easy for people to dismiss it
without really seeing what lies beneath the surface. I feel it is still largely undiscovered—I know
many professionals who have yet to try it out. When administrators see PowerShell for the first
time, many simply shrug, assuming it’s just another version of the primitive command prompt
we inherited from DOS.

The most successful way for me to recruit a new person into the ranks of happy PowerShell
users is by example. When presented with an automation problem, my first suggestion is, “Let’s
try to do it in PowerShell.” A couple of lines later, the usual reaction is, “Wow, can it really do
that?” A short and sweet command can win many hearts for PowerShell. Hopefully, the examples
in this book will win your heart too—it is my goal to share with you the joy of working with a
modern automation environment that will change your professional life forever.

What’s in This Book?
When working on the book, I separated it into sections, and this distinction may be helpful to
you too.

The first section includes Chapters 1 through 14. It introduces the shell’s object-oriented
features and its means for providing basic abstraction like script blocks, functions, scripts, aliases,
and providers. It is best to read those chapters in sequence to get a solid understanding of the
advanced techniques that allow you to work with the shell’s type system, get to know its security
infrastructure, learn about the documentation facilities, and start using important debugging
techniques.

The second section spans Chapters 15 to 21. The text uses advanced scripting techniques
to work with .NET, COM, and WMI objects. This section’s goal is twofold. On one hand, you’ll
learn how to work with external code and employ those techniques to automate almost any
task on a Windows system. On the other hand, you are solving real-world problems that are very
likely to land on your plate some time soon. The chapters describe how to start and stop processes

Deshev_940-3FRONT.fm Page xxiii Monday, January 28, 2008 2:23 PM

xxiv ■IN TR O D U CT IO N

and services, work with text-based I/O, use performance counters to monitor your system,
download and upload files to the web, send e-mail, automate programs via their COM inter-
faces, and get information and manage operating system objects through WMI. The chapters
can be read in random order, and you can easily use them for reference.

The last section of the book is about tools and add-ons that you can use to extend the shell
and become even more productive. Many programs can get much easier to use after extending
them with a tool that provides an important missing feature. The book shows how you can use
freely available open source tools to boost your productivity. An important part of my secret in
winning over new people for PowerShell lies in the fact that I always do my demonstrations
with PowerShell Community Extensions and PowerTab installed. Those two tools are described in
Chapters 21 and 23 respectively.

Do I Need Prior Programming Experience?
The book is written by a programmer—does that mean you need to be a programmer to read it?
Not at all! I have done my best to make the text easy to digest for just about anyone with a little
prior scripting experience. The PowerShell scripting language bears a lot of similarities to other
scripting languages, and users will be able to draw parallels between it and VBScript, JScript,
batch scripts, UNIX shell scripts, and maybe even Perl or Python. People new to scripting should
be able to just use any of the working code samples as they are, without needing to learn the
details or any of the inner workings of the code.

Deshev_940-3FRONT.fm Page xxiv Monday, January 28, 2008 2:23 PM

1

■ ■ ■

C H A P T E R 1

Objects and Object Types

Starting a journey in an unknown programming language and an unfamiliar environment
requires that we start with the fundamentals. What are the most basic, the absolutely essential
parts of any environment? Variables of course! Variables are those tiny virtual boxes that hold
our data and let us mold it into whatever we like. PowerShell is unusual in that all variables hold
references to objects. All objects conform to a known, published contract; an object contains
a set of operations, usually called methods, which allow us to execute actions. Additionally,
PowerShell objects expose properties that allow us to get and set object attributes.

PowerShell is based on the Microsoft .NET framework, but a fully featured shell would go
further than supporting .NET objects only. PowerShell does exactly that through its flexible type
system. It adapts and extends objects of different origins, so that we, the users, can not only
work with them but do so in a uniform way. Learning about the type system and getting to know the
most commonly used types is the most important step on the road to PowerShell mastery.

The Extended Type System
Rule number one for PowerShell is that everything is an object. Objects can have different
types and origins and can contain various data too. Nevertheless, they must all look the same
and expose services in a similar fashion, so that shell scripters do not need to learn different
syntaxes for different objects. The first and most important characteristic of an object is its
type. A type holds information about the operations that an object supports and is most often
a .NET class. To get an object type, we use the GetType() method that all .NET objects have:

PS C:\> (42).GetType()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True Int32 System.ValueType

PS C:\> "Hello, world".GetType()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True String System.Object

Deshev_940-3C01.fm Page 1 Thursday, December 20, 2007 3:58 PM

2 CH AP T E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S

PS C:\> (1,2,3).GetType()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True Object[] System.Array

Accessing Object Properties
An object type contains object members. Members are usually properties and methods. Techni-
cally, they can be fields or events, but we will rarely see those in scripts. Properties are generally
used to expose object data, and guess what? Data, stored in a property, is usually another object.
We can access property values using the following dot notation:

PS C:\> $user = @{}
PS C:\> $user.Name = "John"
PS C:\> $user.Name
John

The preceding example creates a new dictionary object and stores it in the $user variable.
The code then assigns the “John” string as the Name property value. The last line gets the property
value—as you can see, it holds the same string we just put in there.

Properties can be read only or read-write, depending on whether their values can be modi-
fied. Of course, the shell will complain if we try to assign a new value to a read-only property:

PS C:\> "Hello".Length = 7
"Length" is a ReadOnly property.
At line:1 char:9
+ "Hello".L <<<< ength = 7

Strings are immutable objects, so to change a string’s length, we would have to create a
new string object.

Many objects contain special properties, called indexer properties. Those properties expose
collections of objects and allow accessing them via a name or an index. Most often we use that
with an array:

PS C:\> $fruit = "apples", "oranges"
PS C:\> $fruit[0]
apples
PS C:\> $fruit[1]
oranges

Using Object Methods
An object method is a piece of code that represents an operation that the object supports. It
usually takes parameters and returns other objects. As an example, here is how we can check if
a string contains another string:

PS C:\> "Hello".Contains("Hell")
True

Deshev_940-3C01.fm Page 2 Thursday, December 20, 2007 3:58 PM

CH A PT E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S 3

Methods do not necessarily take parameters. Here is the syntax that converts a string object to
uppercase by calling its ToUpper method:

PS C:\> "uppercase, please".ToUpper()
UPPERCASE, PLEASE

Note that we still need to add the parentheses at the end even if we do not need to pass
parameters for the method. Forgetting the parentheses will make PowerShell think we are trying
to get hold of the method object itself:

PS C:\> "uppercase, please".ToUpper

MemberType : Method
OverloadDefinitions : {System.String ToUpper(), System.String ToUpper(Cultu
 reInfo culture)}
TypeNameOfValue : System.Management.Automation.PSMethod
Value : System.String ToUpper(), System.String ToUpper(Cultur
 eInfo culture)
Name : ToUpper
IsInstance : True

That may be of use to us if we wish to get more information about the method itself, but
most often we just want to call it.

Object Adapters
.NET objects are not the only kids in the object-oriented game. A self-respecting shell would
allow us to use various application’s automation objects, Active Directory data, and Windows
Management Instrumentation classes and objects at the least—which all have different origins
and are implemented using different technologies. We need a mechanism that will make those
look and work just like .NET objects do. PowerShell calls that mechanism object adaptation.
Internally, the shell knows how to work with the various object types, and that knowledge is
spread among a set of adapter objects. When a foreign object comes along, the shell wraps it in
a native .NET object that serves as a view of the original object. The view object is of the PSObject
type object and uses the adapter to get properties and methods. Most of the time, a PSObject
behaves just like the original object, and the user can hardly tell he or she is using a special
object. If we need the original object, we can always get it using the special PSBase property.
Now, here is a list of the adapters the shell uses when it works with objects.

ManagementObjectAdapter

This adapter knows about Windows Management Instrumentation (WMI) objects and makes
working with them easier by, for example, exposing their Properties collection as object proper-
ties. Here is a taste of the clumsy syntax that we would have had to use to get a process’s caption
if we did not have that adapter:

PS C:\> (Get-WmiObject win32_process)[0].PSBase.Properties["Caption"].Value
System Idle Process

Deshev_940-3C01.fm Page 3 Thursday, December 20, 2007 3:58 PM

4 CH AP T E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S

Note the use of the PSBase property to get to the raw, unadapted object. Using the adapted
version, we can just say:

PS C:\> (Get-WmiObject win32_process)[0].Caption
System Idle Process

DirectoryEntryAdapter

This adapter works with the Windows active directory in a similar way to the
ManagementObjectAdapter. Here is how it hides the ugliness of working with a nested Properties
collection:

$user = [ADSI]"WinNT://./Hristo,user"
$user.PSBase.Properties["Name"]

behind a normal property:

PS C:\> $user = [ADSI]"WinNT://./Hristo,user"
PS C:\> $user.Name
Hristo

DataRowAdapter

This class knows about the ADO.NET DataRow object and exposes row properties accessible via
the column names as object properties. Let’s take as an example a data table saved as XML in
the following format:

<Users>
 <User>
 <Name>John</Name>
 <Age>25</Age>
 </User>
 <User>
 <Name>Mike</Name>
 <Age>20</Age>
 </User>
</Users>

Here is how we access row data:

PS C:\> $ds = New-Object Data.DataSet
PS C:\> $ds.ReadXml("C:\PowerShell\data.xml")
InferSchema
PS C:\> $ds.Tables[0].Rows[0].Name
John
PS C:\> $ds.Tables[0].Rows[0].PSBase["Name"]
John

The last line uses the raw row object as an illustration of what row data access would have
looked like without the adapter.

Deshev_940-3C01.fm Page 4 Thursday, December 20, 2007 3:58 PM

CH A PT E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S 5

DataRowViewAdapter

This guy works in the same way as DataRowAdapter—the only difference is that it adapts ADO.NET
DataRowView objects.

XmlNodeAdapter

This very important adapter class transfers inner objects and XML attributes as object properties to
make things easier for the user. The .NET XML classes make it all too complicated by making
the user think if a value is stored as an XML attribute or as an element value. The adapter makes
all values look like properties to PowerShell code. Here is how we can navigate our XML-based
user data by using the property syntax:

PS C:\> $xmlDoc = New-Object Xml.XmlDocument
PS C:\> $xmlDoc.Load("C:\PowerShell\data.xml")
PS C:\> $xmlDoc.Users.User[0]

Name Age
---- ---
John 25

Convenient, isn’t it? Exposing inner elements as properties allows us to quickly query an
XML tree without using heavy-duty tools like XPath at all. XML finally made easy!

ComAdapter

Working with COM objects involves dealing with the compiled type information and accessing
the COM type libraries. The PowerShell COM adapter knows how to do that and spares us the
details. Look how the Internet Explorer COM object works just like any other object you have
seen so far:

PS C:\> $ie = New-Object -COM InternetExplorer.Application
PS C:\> $ie.Visible = $true

Type Extensions
Object adapters are the primary mechanism of changing how an object looks, but they are internal
to PowerShell: they are implemented as .NET objects and are an integral part of the PowerShell
code base. Since there is no way for a user to create his or her own adapter or extend an existing
one, we have another mechanism of modifying object types: type extensions. The type system
allows users to provide additional code and data and add members, both properties and methods,
to objects and object types at runtime. PowerShell supports extending objects by adding many
different types of members, and we will go through doing that in greater detail in Chapter 12.
For now, this is how you can get some of the extended properties of the
System.Diagnostics.Process type:

PS C:\> (Get-Process)[0] | Get-Member -type AliasProperty

 TypeName: System.Diagnostics.Process

Deshev_940-3C01.fm Page 5 Thursday, December 20, 2007 3:58 PM

6 CH AP T E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S

Name MemberType Definition
---- ---------- ----------
Handles AliasProperty Handles = Handlecount
Name AliasProperty Name = ProcessName
NPM AliasProperty NPM = NonpagedSystemMemorySize
PM AliasProperty PM = PagedMemorySize
VM AliasProperty VM = VirtualMemorySize
WS AliasProperty WS = WorkingSet

The code gets the first of all processes on the system and displays its alias properties. You
can see that PowerShell extends the Process type, so that we can use shorter names for some of
the properties it exposes: Name instead of ProcessName, WS instead of WorkingSet, and so on.

Alias properties just reference other properties by name and return their values. Property
aliasing is usually done to shorten some of the most commonly used properties to save typing
and to make objects look consistent. For example, one of my pet peeves with .NET has always
been that collections have a Count property that returns the number of items inside. Arrays, on
the other hand, do not have a Count property—they have a Length property instead. I have to
remember which property to use all the time. PowerShell solves that problem by adding an
extended Count property to arrays, relieving me of this burden:

PS C:\> Get-Member -input (1,2,3) -type AliasProperty

 TypeName: System.Object[]

Name MemberType Definition
---- ---------- ----------
Count AliasProperty Count = Length

Remember how the PSBase special property gave us access to the raw unadapted object?
We can get access to the extended object view only by accessing the PSExtended special property
in much the same manner. This is how to get all the extended members for the Process type:

PS C:\> (Get-Process)[0].PSExtended | Get-Member

 TypeName: System.Management.Automation.PSMemberSet

Name MemberType Definition
---- ---------- ----------
Handles AliasProperty Handles = Handlecount
Name AliasProperty Name = ProcessName
NPM AliasProperty NPM = NonpagedSystemMemorySize
PM AliasProperty PM = PagedMemorySize
VM AliasProperty VM = VirtualMemorySize
WS AliasProperty WS = WorkingSet
__NounName NoteProperty System.String __NounName=Process
PSConfiguration PropertySet PSConfiguration {Name, Id, PriorityClass,...
PSResources PropertySet PSResources {Name, Id, Handlecount, Worki...

Deshev_940-3C01.fm Page 6 Thursday, December 20, 2007 3:58 PM

CH A PT E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S 7

Company ScriptProperty System.Object Company {get=$this.Mainmodu...
CPU ScriptProperty System.Object CPU {get=$this.TotalProcess...
Description ScriptProperty System.Object Description {get=$this.Main...
FileVersion ScriptProperty System.Object FileVersion {get=$this.Main...
Path ScriptProperty System.Object Path {get=$this.Mainmodule....
Product ScriptProperty System.Object Product {get=$this.Mainmodu...
ProductVersion ScriptProperty System.Object ProductVersion {get=$this.M...

Again, we will go through all types of extended members in Chapter 12. For now, just think
about Note properties, as a way to return a constant value from a property, and for Script prop-
erties, as a way to attach our own script code that will get executed whenever a property is
gotten or set. Going back to our array extension and the Count property, this is how to get to it:

PS C:\> (1,2,3).PSExtended | Get-Member

 TypeName: System.Management.Automation.PSMemberSet

Name MemberType Definition
---- ---------- ----------
Count AliasProperty Count = Length

You might have noticed that the PSExtended property returns a special type of object:
PSMemberSet. Member sets are logical groups of members that we can use to create different
views of objects. To get the member sets that are defined for an object, we can again use the
Get-Member command and indicate explicitly that we are interested in PropertySet and MemberSet
property types:

PS C:\> (Get-Process)[0] | Get-Member -type PropertySet,MemberSet

 TypeName: System.Diagnostics.Process

Name MemberType Definition
---- ---------- ----------
PSConfiguration PropertySet PSConfiguration {Name, Id, PriorityClass, Fi...
PSResources PropertySet PSResources {Name, Id, Handlecount, WorkingS...

In the preceding example, you can see two views defined for a Process object: one,
PSConfiguration, that focuses on how a process has been configured and another, PSResources,
that reports on the system resources that are being used. We can use those property sets when
displaying information about an object using one of the Format-* commands:

PS C:\> Get-Process WinWord | Format-List PSResources

Name : WINWORD
Id : 3368
HandleCount : 356
WorkingSet : 44331008

Deshev_940-3C01.fm Page 7 Thursday, December 20, 2007 3:58 PM

8 CH AP T E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S

PagedMemorySize : 20971520
PrivateMemorySize : 20971520
VirtualMemorySize : 331403264
TotalProcessorTime : 00:03:12.5937500

PS C:\> Get-Process WinWord | Format-List PSConfiguration

Name : WINWORD
Id : 3368
PriorityClass : Normal
FileVersion : 11.0.8134

As a summary, each object has a set of views that it must support. They are accessible
through special properties:

• PSObject: The default view is what we get when we work with the object directly.

• PSBase: The raw object view that gives us access to a .NET or COM object that has not
been adapted by the type system.

• PSAdapted: The adapted object view has members added or filtered out after the object
has been processed by its adapter.

• PSExtended: The extended view of the object contains only members added as type
extensions.

Built-in Types
PowerShell not only allows us access to many types of objects and lets us modify them in a
uniform way—it also includes several built-in types that are worth knowing, as they are the
ones we will be using in our everyday work with the shell. To be honest, PowerShell does not
build those types from scratch; it relies heavily on the .NET framework, and all the built-in
types are really .NET types. The shell designers have extended those types and added special
syntax shortcuts to the language to make it easier to use them.

Strings and String Operations
Character strings are arguably the most commonly used data type in any programming language.
Most likely that is the case because strings contain free-form data and are used to transport data
across system boundaries. PowerShell’s string support is built on top of the .NET System.String
object type. That means that a string in PowerShell will have all operations that .NET strings
have. On top of that, strings have a number of useful extensions that increase the expressive-
ness and effectiveness of string manipulation.

Deshev_940-3C01.fm Page 8 Thursday, December 20, 2007 3:58 PM

CH A PT E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S 9

String Literals

Creating string literals is easy; we just need to surround a sequence of characters in single or
double quotation marks:

PS C:\> "This is a string"
This is a string
PS C:\> 'This is a string too'
This is a string too

Why support both types of quotes? That is a convenience feature. Mixing quotes allows us
to embed quotation marks inside strings without having to escape them:

PS C:\> 'John said: "OK."'
John said: "OK."
PS C:\> "Let's go"
Let's go

Sometimes, strings get complex, and mixing types of quotation marks becomes a burden.
In that case, we can just escape a quotation mark and move along. To do so, simply type the
symbol twice:

PS C:\> "John said: ""OK."""
John said: "OK."
PS C:\> 'Let''s go'
Let's go

Another method of escaping quotes is to use the general escape symbol, the backtick (`):

PS C:\> "John said: `"OK.`""
John said: "OK."

One thing to keep in mind is that backtick escaping works in double-quoted strings only.
The backtick can be used as an escape character for various symbols that are hard to type:

• `0: The null symbol is used as a string end delimiter. It does not have a printable
representation.

• `a: The alert symbol is the character having the 7 ASCII character code. When a string
that contains that character gets printed on the screen, it will produce a beep on the
computer speaker. The symbol itself will have no visible representation.

• `b: Backspace will delete the previous symbol:

PS C:\> "aa`b bb"
a bb

• `f: The form feed or page break symbol will make a printer start printing on a new page.
Again, it has no printable representation.

Deshev_940-3C01.fm Page 9 Thursday, December 20, 2007 3:58 PM

10 CH AP T E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S

• `n: The line feed symbol causes a printer or terminal to start printing on a new line:

PS C:\> "aa`nbb"
aa
bb

• `r: The carriage return symbol causes a printer or terminal to start printing on the begin-
ning of the line. The character will not generate a new line, and subsequent characters
will be printed at the beginning of the current line possibly overwriting previous output.
In Windows systems, this symbol is used in conjunction with ̀ n as a line separator in text
files. The `r`n sequence indicates a new line.

• `t: The horizontal tab symbol moves several symbols forward, according to the current
console settings:

PS C:\> "aa`tbb"
aa bb

• `v: Though the vertical tab symbol is rarely, it may prove useful when doing printing or
formatting console-based output.

A useful feature of the backtick symbol is that you can use it to escape the new line symbol
when typing at the console. Ending your line with a backtick signals to the shell that the command
continues on the next line:

PS C:\> Get-Item C:\Windows\System32\WindowsPowerShell\v1.0\types.ps1xml `
>> | Get-Content | Measure-Object
>>

Count : 3131
Average :
Sum :
Maximum :
Minimum :
Property :

Often, we want to input a large block of text without having to take care of escaping quotes.
This is where here strings come handy! Here strings are special markers that indicate that
everything between them is a part of the string. To create such a string, we surround it with @"
and "@ or @' and '@:

PS C:\> @"
>> line one
>> line two
>>
>> line three
>> "@
>>
line one
 line two

Deshev_940-3C01.fm Page 10 Thursday, December 20, 2007 3:58 PM

CH A PT E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S 11

line three
PS C:\> @'
>> "Let's
>> go dowtown!", John said.
>> '@
>>
"Let's
 go dowtown!", John said.

Note that all white space, like new lines and tabs, is preserved in here strings. Keep in mind
that the string start and end markers must be placed alone on separate lines.

String Interpolation

One of the greatest productivity boosters when working with strings is string interpolation, a
widely used feature, also known as variable substitution, that is present in many script and
shell languages. In essence, these terms refer to the ability to nest variable names in string
literals and have the shell expand those variables and embed their values instead. Typically, we
use that feature to format messages for display or to craft specially formatted strings before
passing them to other programs. Here is how we can send a message to the user:

PS C:\> $processCount = (Get-Process).Count
PS C:\> "$processCount processes running in the system."
61 processes running in the system.

Sometimes, we do not want to treat a dollar-sign expression as a variable name. To prevent
that, we have to escape the dollar sign using a backtick:

PS C:\> "`$processCount is the property that we need."
$processCount is the property that we need.

Another option is to use a single-quoted string. Interpolation only works on double-quoted
strings:

PS C:\> '$processCount processes running in the system.'
$processCount processes running in the system.

String interpolation works for here strings too:

PS C:\> @"
>> Processes
>> ---------
>> $processCount
>> "@
>>
Processes

61

Analogous to ordinary single-quoted strings, there is no interpolation when using single-
quoted here strings.

Deshev_940-3C01.fm Page 11 Thursday, December 20, 2007 3:58 PM

12 CH AP T E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S

We can use some really complex variable expressions inside strings, but we have to be
careful and obey the formatting rules. Variable parsing stops at the end of the first word, and to
use an expression, we have to put it inside a $() block:

PS C:\> $processes = (Get-Process)
PS C:\> "$($processes.Count) processes running in the system."
60 processes running in the system.

Note that variables inside the $() block still need to be prefixed with dollar signs. Now, let’s
go a step further and get rid of the $processes variable entirely:

PS C:\> "$((Get-Process).Count) processes running in the system."
60 processes running in the system.

We can embed any legal PowerShell expression:

PS C:\> "Total due: $(12 * 5000)"
Total due: 60000

We can even cause side effects when generating strings and modify variable values from
embedded expressions:

PS C:\> $times = 0
PS C:\> "Operation performed $($times++; $times) times"
Operation performed 1 times
PS C:\> $times
1

■Caution While useful at times, relying on side effects triggered by string interpolations is usually considered
bad programming practice and is best avoided. Most people expect that variable expressions do not modify
the system state, and doing the opposite will lead to many hard-to-track bugs.

Productivity Boosting String Operators

In PowerShell, strings have been extended with special syntax so that commonly used opera-
tions are easier to perform. PowerShell uses the familiar dash notation that looks like providing
a command parameter. The most important operations follow.

Formatting

Instead of calling the static String.Format method like this:

PS C:\> [string]::Format("{0} running processes.", $processCount)
61 running processes.

PowerShell can format a string once it sees the –f parameter:

PS C:\> "{0} running processes." -f $processCount
61 running processes.

Deshev_940-3C01.fm Page 12 Thursday, December 20, 2007 3:58 PM

CH A PT E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S 13

Wildcard Matching

This is similar to matching using a regular expression without all the intrinsic power regular
expressions have. The advantage to this method is that it is really intuitive and simple to use.
For example, we can test if a string starts with the word “Test” as follows:

PS C:\> "Test string" -like "Test*"
True
PS C:\> "Sample string" -like "Test*"
False

The asterisk symbol means “zero or more symbols of any type.” We can use a question
mark as a match for exactly one symbol of any type:

PS C:\> "notepad.exe" -like "notepad.???"
True
PS C:\> "notepad.exe" -like "notepad.?"
False
PS C:\> "notepad.exe" -like "?otepad.exe"
True

We can also use a character range. Here is how to check if a string starts with any letter and
ends with “s” or “n”:

PS C:\> "notepads" -like "[a-z]*[sn]"
True
PS C:\> "notepadz" -like "[a-z]*[sn]"
False
PS C:\> "_notepads" -like "[a-z]*[sn]"
False

Regular Expression Matching

Regular expression matching is similar to wildcard matching with the only difference being
that we use the –match operator and provide a regular expression pattern. Regular expressions
are a vast subject on which entire books have been written, so I will not be covering them here.
As an example, this is how you match something that looks like a domain name:

PS C:\> "www.yahoo.com" -match "(www\.)?\w+\.(com|org|net)"
True
PS C:\> "yahoo.com" -match "(www\.)?\w+\.(com|org|net)"
True
PS C:\> "yahoo.org" -match "(www\.)?\w+\.(com|org|net)"
True

The expression matches strings that optionally start with “www. ”, followed by one or
more alphanumeric characters, followed by a dot and ending in “com”, “org”, or “net”. Note
that the dot (.) symbol has a special meaning in regular expressions. It signifies any character,
so we escape it with a backslash.

Deshev_940-3C01.fm Page 13 Thursday, December 20, 2007 3:58 PM

14 CH AP T E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S

■Tip For more information you can visit the excellent online resource that is the http://
www.regular-expressions.info site and go through its tutorials and references on the subject. The site
covers regular expression usage in different programming languages and environments. While the syntax and
support are more or less the same on most platforms, there are some subtle differences, so make sure you
go through the article about .NET regular expressions at http://www.regular-expressions.info/
dotnet.html. PowerShell uses the .NET regular expressions under the hood.

Replacing Strings or Substrings

PowerShell provides the –replace operator to replace string occurrences. This operator behaves
much differently than the .NET String.Replace() method! String.Replace() takes a string as a
parameter and replaces all occurrences in the target string:

PS C:\> "one.test, two!test".Replace(".test", "-->DONE")
one-->DONE, two!test

-replace takes a regular expression and internally calls Regex.Replace(). Be careful when
providing the replace pattern, and escape regular expression special characters if needed. The
preceding example might not work as expected if we use –replace:

PS C:\> "one.test, two!test" -replace ".test", "-->DONE"
one-->DONE, two-->DONE

The dot instructs the regular expression engine to look for any character, so our exclama-
tion mark gets replaced too. To correct that, we have to escape the dot:

PS C:\> "one.test, two!test" -replace "\.test", "-->DONE"
one-->DONE, two!test

Having interpolation and regular expressions under your belt will significantly boost your
scripting productivity, so practicing those two until they feel natural might be an excellent
idea.

Numeric Types
PowerShell supports all native .NET numeric types. Probably the only ones that we will even-
tually need to construct from literals are those in the following sections.

System.Int32

System.Int32, also known as int, is a 32-bit integer value that is the default for most operations.
Creating one is a matter of typing a sequence of digits:

PS C:\> (3).GetType().FullName
System.Int32

Deshev_940-3C01.fm Page 14 Thursday, December 20, 2007 3:58 PM

CH A PT E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S 15

Floating Point Numbers

Single- and double-precision floating point numbers are also known as single or float and
double. The most commonly used type is double, and it can be created using different numeric
sequences:

PS C:\> (3.0).GetType().FullName
System.Double
PS C:\> (-3E2).GetType().FullName
System.Double
PS C:\> (4.5E-2).GetType().FullName
System.Double

Note the scientific notation that allows us to specify a mantissa and an exponent.

Decimal Numbers

A System.Decimal, also referred to as decimal, number represents a very large decimal number
that is appropriate for financial operations. These numbers perform well when we need a large
number of integral and fractional digits without round-off errors. To create a decimal number,
we need to add a d suffix to our number literal:

PS C:\> 2d
2
PS C:\> 2.5d
2.5
PS C:\> 2.5d * 10000000000000000000000000000
25000000000000000000000000000

Hexadecimal Numbers

Just as in all languages sharing a common heritage with C, in PowerShell, we specify hexadecimal
numbers by prefixing them with 0x:

PS C:\> 0x10
16
PS C:\> 0x1A
26
PS C:\> 0xABCD
43981

Most computer-related numbers, however, are not multiples of ten. Computers use only
binary, and many important numbers are multiples of two. Fortunately, the PowerShell
designers have added a clever trick: binary multiplier suffixes. We can append KB, MB, or GB
after any number and get a multiple of 1,024, 1,048,576, and 1,073,741,824, respectively. How
nice! Here is how we can use that to get information about a running process’s memory usage:

PS C:\> (Get-Process winword).VM -ge 20MB
True
PS C:\> (Get-Process winword).VM / 1MB
310.69921875

Deshev_940-3C01.fm Page 15 Thursday, December 20, 2007 3:58 PM

16 CH AP T E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S

Yes, my winword process is using more than 20MB of virtual memory. In fact, it is eating up
about 310 of them. You can use a similar technique for files and other objects in your computer:

PS C:\> (Get-Item C:\pagefile.sys -Force).Length / 1GB
1.5

Pagefile.sys is a system file, so I had to use the –Force parameter to get to it.

Numbers as Strings

Finally in this section we will look at how numbers can be formatted and converted to strings.
We do that by using the –f string operator. Some of the particularly useful formatting options
follow:

• Currency: Use a {0:c} format string. The currency symbol will be obtained from the
current culture.

PS C:\> "{0:c}" -f 2.5
$2.50

• Percentage: The format string is {0:p}:

PS C:\> "{0:p}" -f 0.2
20.00 %

• Fixed number of digits: Use the pound sign (#) as a digit placeholder. For example, this
line will format a number and round it to the third digit after the decimal point:

PS C:\> "{0:#.###}" -f 3.4567
3.457

• Scientific notation: Some people find scientific notation odd; others, useful. Passing a
{0:e} format string will get us a properly formatted normalized mantissa and an exponent:

PS C:\> "{0:e}" -f 333.4567
3.334567e+002

There are a number of other formats available in .NET that we will not cover here. To get
all of them, peruse the System.Globalization.NumberFormatInfo class documentation on MSDN.

Arrays and Collections
Arrays and other ordered collections play a very important part in all programming tasks. I will
use the words “array” and “ordered collection” interchangeably in this section, as PowerShell
adapts all list collections so that they work in the same way, and we cannot tell one type of
collection from another (it is possible to do so, but there is little value in that).

Creating an array is as simple as listing all its members and separating them with commas.
Here is a small array containing numbers:

PS C:\> 1, 2, 3, 4
1
2

Deshev_940-3C01.fm Page 16 Thursday, December 20, 2007 3:58 PM

CH A PT E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S 17

3
4

PS C:\> (1, 2, 3, 4).GetType().FullName
System.Object[]

Note that the array is of the Object type, which means we can hold all types of objects inside:

PS C:\> 1, 2.5, "apples", (Get-Process winword)
1
2.5
apples

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 352 15 19804 46920 311 112.83 3252 WINWORD

PS C:\> (1, 2.5, "apples", (Get-Process winword)).Count
4

The preceding code creates an array of objects that contains an integer, a double precision
floating point number, a string, and a Process object—that’s four types of objects in total: an
int, a double, a string, and a System.Diagnostics.Process instance.

Array creation has a very free-form syntax. The most formal syntax is to wrap the members
in a @() block:

PS C:\> @("one", "two")
one
two

This is the only way to create an empty array:

PS C:\> (@()).Count
0

PS C:\> (@()).GetType().FullName
System.Object[]

As a convenience, arrays can be created using the numeric range notation. It requires that
we provide the start and end numbers and fills in the values between them for us:

PS C:\> 5..1
5
4
3
2
1

PS C:\> 1..5

Deshev_940-3C01.fm Page 17 Thursday, December 20, 2007 3:58 PM

18 CH AP T E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S

1
2
3
4
5

PS C:\> (0..255).Count
256

That syntax is extremely powerful for enumerating ports, addresses, and all sorts of sequen-
tial data.

The array creation syntax recognizes nested arrays and flattens them into one. This allows
us to add arrays and even ranges in place:

PS C:\> 1, (5, 6), 2
1
5
6
2

PS C:\> 1, (10..7), 2
1
10
9
8
7
2

We can access the array items by using the bracket notation:

PS C:\> $a = 2,3,4
PS C:\> $a[0]
2
PS C:\> $a[1]
3
PS C:\> $a[2] = 5
PS C:\> $a
2
3
5

Note that we modify an item by directly assigning a new value to it. PowerShell arrays, just
like the .NET ones, are zero-based, which means that the first item is always at index zero, and
the last one at the item count minus one.

Interestingly enough, we can pass more than one index inside the brackets. The return is
an array that contains the items at those indexes. This is called an array slice. Here is how to get
the first and the last item from an array:

Deshev_940-3C01.fm Page 18 Thursday, December 20, 2007 3:58 PM

CH A PT E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S 19

PS C:\> $a = 2,3,4
PS C:\> $a[0,2]
2
4

The preceding example is a bit problematic, because it requires us to know that the array
has three items, so that we request the one at index 2. Many programming languages, Power-
Shell included, allow us to address items starting from the end by using negative indexes. Here
is how to change the previous example, so that our code does not have to use a hard-coded
number for the array length in order to get the last value:

PS C:\> $a = 2,3,4
PS C:\> $a[0,-1]
2
4

We can create slices by passing ranges as our array indexes too! Here is how to get five items,
starting from the third:

PS C:\> $a = (1, 2, 3, 4, 5, 6, 7, 8)
PS C:\> $a[2..6]
3
4
5
6
7

Note that the ranges are inclusive, so we have to pass 2..6 , instead of 2..7, to get the five items.
Assigning arrays to items will flatten the arrays. This makes for a very convenient way to

insert several items at a specific location:

PS C:\> $a = 1, 2, 3
PS C:\> $a[1] = 10, 11, 12
PS C:\> $a
1
10
11
12
3

Note that the original value of the second item got destroyed. To preserve it, we need to
put forth some extra effort. Prepending the inserted array with the original value does the trick:

PS C:\> $a = 1, 2, 3
PS C:\> $a[1] = $a[1], 10, 11, 12
PS C:\> $a
1
2
10
11

Deshev_940-3C01.fm Page 19 Thursday, December 20, 2007 3:58 PM

20 CH AP T E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S

12
3

Similar to strings, arrays have the plus operator defined for concatenation. “Adding” an
object or another array to an array will result in a new array that contains all values:

PS C:\> $a = 1,2
PS C:\> $a = $a + 3
PS C:\> $a
1
2
3

The preceding operation adds an item to a variable and assigns the result to the same vari-
able, effectively modifying the variable in place; it is so common that most languages define a
shortcut operator (+=) that does exactly that. PowerShell supports that too:

PS C:\> $a += 4
PS C:\> $a
1
2
3
4

PS C:\> $a += 5,6
PS C:\> $a
1
2
3
4
5
6

Searching for items inside collections is a routine task in many languages. How do we
search an array for a specific value? Here is an attempt:

foreach ($item in (2,3,4)){ if ($item -eq 3){ echo "Found" }}

That feels too clumsy, and we have to repeat the same loop everywhere we need to search
for an array item! Checking if an array contains an item is so common that the PowerShell
designers have provided two specific operators for that: -contains and -notcontains:

PS C:\> (2, 3, 4) -contains 3
True
PS C:\> (2, 3, 4) -notcontains 3
False
PS C:\> (2, 3, 4) -notcontains 5
True

Deshev_940-3C01.fm Page 20 Thursday, December 20, 2007 3:58 PM

CH A PT E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S 21

Of course, those operators work for different variable types as well:

PS C:\> (2, "some value", 4) -contains "some value"
True

Beware of the built-in type conversions though! You may get something quite different
than what you expect:

PS C:\> (2, 3, 4) -contains "3"
True
PS C:\> (2, 3, 4) -contains "3.0"
True

See how the “3.0” string got converted to the integer 3 and signaled True? If you need to
look for strings and avoid type coercion, you may have to use a loop or the Where-Object
command:

PS C:\> (2, 3, 4) | Where-Object { $_ -is [string] -and $_ -eq "3.0"}
PS C:\> (2, "3.0", 4) | Where-Object { $_ -is [string] -and $_ -eq "3.0"}
3.0

I will describe loops in the next chapter and talk about the Where-Object command in
greater detail in Chapter 3.

Dictionaries and Hash Tables
Dictionaries, also called associative arrays, are objects that map a set of keys to a set of values.
They contain a number of key-value pairs and allow for easy lookup of values given their keys.
Dictionaries are a convenient way to store related data that usually comprises a logical record
about a real-world entity. The syntax for creating a dictionary in PowerShell looks like the formal
array creation syntax; the only difference is that we use braces. Here is a sample personal record
dictionary that has two items with keys “Name” and “Address” respectively:

PS C:\> $d = @{"Name"="John"; "Address"="12 Easy St."}
PS C:\> $d

Name Value
---- -----
Name John
Address 12 Easy St.

PowerShell uses System.Collection.Hashtable objects internally whenever it creates a
dictionary object. Hashtable implements the .NET IDictionary interface, and PowerShell’s
extended type system allows us to work in the same way with all IDictionary objects.

PS C:\> $d.GetType().FullName
System.Collections.Hashtable

Dictionaries do not impose any restrictions on the type of objects that we use as keys or
values. Here is how to add different objects to a Hashtable:

Deshev_940-3C01.fm Page 21 Thursday, December 20, 2007 3:58 PM

22 CH AP T E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S

PS C:\> $d = @{"Name"="John"; "Age"=30; `
>> "File"=(Get-Item C:\PowerShell\Test.txt)}
>>
PS C:\> $d

Name Value
---- -----
Name John
Age 30
File C:\PowerShell\Test.txt

$d contains a string, an int, and a FileInfo object. Our dictionary is starting to look like a
person’s record taken from a real database already!

You are not restricted to using only strings as dictionary keys. We can certainly use numbers,
but in general, any object will do. Assuming we have Windows Calculator and Microsoft Word
running on the system, here is how to create a set of Process objects and map them to string values:

PS C:\> $set = @{(Get-Process winword)="MS Word"; (Get-Process calc)="calc"}

PS C:\> $set

Name Value
---- -----
System.Diagnostics.Process ... calc
System.Diagnostics.Process ... MS Word

Empty dictionaries are created with the @{} expression:

PS C:\> $empty = @{}
PS C:\> $empty.GetType().FullName
System.Collections.Hashtable

There are several ways to access values in a dictionary. The most important one is the
array-like notation; we provide the key name in brackets:

PS C:\> $d = @{"Name"="John"; "Age"=30; "Address"= "12 Easy St."}
PS C:\> $d["Name"]
John

Dictionaries can behave like objects, and we can access their values as properties using the
dot notation:

PS C:\> $d = @{"Name"="John"; "Age"=30; "Address"= "12 Easy St."}
PS C:\> $d.Name
John

The object notation is more limiting than the array one in a sense that it is hard to provide
a key that contains spaces, new lines, or other fancy symbols. The key also has to be convertible
from a string. To provide free-form key values, you have to use the array notation.

The object notation supports some fancy ways of providing key values too. This is how to
use a string as the property name:

Deshev_940-3C01.fm Page 22 Thursday, December 20, 2007 3:58 PM

CH A PT E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S 23

PS C:\> $d."Name"
John

We can use a variable as the key:

PS C:\> $property = "Name"
PS C:\> $d.$property
John

and even an expression:

PS C:\> $d.$($property)
John
PS C:\> $d.$("Na" + "me")
John

Similar to array slices, dictionaries support getting many values at once by providing an
array of keys in the brackets. The return object is an array that contains the values. This is how
to get only a person’s name and address from our previous array:

PS C:\> $d = @{"Name"="John"; "Age"=30; "Address"= "12 Easy St."}
PS C:\> $d["Name", "Address"]
John
12 Easy St.

Adding items to a dictionary is a just matter of assigning a new key-value pair with either
the object or array notation:

PS C:\> $d.Department = "Accounting"
PS C:\> $d["SSN"] = 123456789
PS C:\> $d

Name Value
---- -----
Department Accounting
Name John
Age 30
SSN 123456789
Address 12 Easy St.

Removing items is a bit trickier. We have to use the Remove() method and provide the key:

PS C:\> $d.Remove("Age")
PS C:\> $d.Remove("SSN")
PS C:\> $d

Name Value
---- -----
Department Accounting
Name John
Address 12 Easy St.

Deshev_940-3C01.fm Page 23 Thursday, December 20, 2007 3:58 PM

24 CH AP T E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S

Other important dictionary methods that are worth knowing are the ones that verify if an
item is present. Contains() and ContainsKey() are synonyms that check if an item with the given
key exists in the dictionary:

PS C:\> $d.Contains("John")
False
PS C:\> $d.Contains("Name")
True
PS C:\> $d.ContainsKey("Name")
True

ContainsValue() is our friend when we want to look for a value:

PS C:\> $d.ContainsValue("John")
True
PS C:\> $d.ContainsValue("Name")
False

In addition, dictionaries expose all their keys and values as arrays through the Keys and
Values properties:

PS C:\> $d.Keys
Department
Name
Address
PS C:\> $d.Values
Accounting
John
12 Easy St.

We can even substitute our calls to ContainsKey() and ContainsValue() with array
searches:

PS C:\> $d.Keys -contains "Name"
True
PS C:\> $d.Values -contains "John"
True

Remember that –contains will silently convert types under the hood! ContainsKey() and
ContainsValue() do not.

Of course, just like any .NET collection, dictionaries have a Count property that tells us the
number of key-value pairs stored inside:

PS C:\> $d = @{"Name"="John"; "Age"=30; "Address"= "12 Easy St."}
PS C:\> $d.Count
3

Deshev_940-3C01.fm Page 24 Thursday, December 20, 2007 3:58 PM

CH A PT E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S 25

Type Literals
The PowerShell language allows us to access types by using a special syntax called type literals.
A type literal is just a type name enclosed in brackets. At their very simplest, type literals return
the underlying .NET System.Type object instance:

PS C:\> [System.Int32]

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True Int32 System.ValueType

PS C:\> [System.String]

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True String System.Object

PS C:\> [System.Diagnostics.Process]

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True False Process System.Compon...

We do not really need to repeat that System namespace prefix all the time. Most of the types
that we work with are below the System namespace, and PowerShell already knows that. It
allows us to omit the prefix altogether:

PS C:\> [Diagnostics.Process]

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True False Process System.Compon...

We also have a number of type aliases defined for our convenience. The most popular
follow:

• int, short, long for referencing the System.Int32, System.Int16 and System.Int64 types
respectively.

• byte and sbyte for the unsigned System.Byte and the signed System.SByte types.

• bool for System.Boolean.

• void for no type at all.

• string for the System.String type.

• float and single for System.Single and double for System.Double.

Deshev_940-3C01.fm Page 25 Thursday, December 20, 2007 3:58 PM

26 CH AP T E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S

• decimal aliases System.Decimal.

• regex points to System.Text.RegularExpressions.Regex.

• adsi refers to System.DirectoryServices.DirectoryEntry.

• wmi, wmiclass, and wmisearcher refer to System.Management.ManagementObject, System.
Management.ManagementClass, and System.Management.ManagementObjectSearcher,
respectively.

You do not need to remember what each alias stands for; you can always check:

PS C:\> ([regex]).FullName
System.Text.RegularExpressions.Regex

PS C:\> ([adsi]).FullName
System.DirectoryServices.DirectoryEntry

PS C:\> ([wmisearcher]).FullName
System.Management.ManagementObjectSearcher

PS C:\> ([wmi]).FullName
System.Management.ManagementObject

Type Conversion
Most often, type literals are used to instruct the shell to convert an object from one type to
another. The syntax involved requires that we place a type literal before the original object, and
the operation will return a new object if nothing goes wrong. Here is how to convert a string to
an integer:

PS C:\> $str = "10"
PS C:\> $str.GetType().FullName
System.String
PS C:\> $num = [int] $str
PS C:\> $num
10
PS C:\> $num.GetType().FullName
System.Int32

Of course, things can and will go wrong. There are a lot of conversions that are just impossible.
In that case, an exception will be thrown:

PS C:\> [int] "not an integer string"
Cannot convert value "not an integer string" to type "System.Int32". Error:
 "Input string was not in a correct format."
At line:1 char:6
+ [int] <<<< "not an integer string"

Deshev_940-3C01.fm Page 26 Thursday, December 20, 2007 3:58 PM

CH A PT E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S 27

How PowerShell Converts Between Types

PowerShell really does its best when trying to convert between types. It relies heavily on the
.NET framework type conversion mechanisms and exposes a mechanism that programmers
can use to provide conversion facilities. Here are the strategies the shell tries when tasked with
a conversion operation:

1. It checks if the new type is directly assignable from the old. For that to be true in .NET,
the types have to be the same or one of them must inherit directly or indirectly from
the other.

2. Well-known ways to convert from one object to another have been built into the language
itself; PowerShell next attempts to convert using these. See the “Built-in Type Conversion
Rules” section for details.

3. Looks for a TypeConverter or a PSTypeConverter associated class. TypeConverter classes
are a part of the .NET native mechanism of converting types, and PSTypeConverter is a
PowerShell-specific converter object. Both TypeConverter and PSTypeConverter classes
can be associated with types at compile type, by marking our types with the correct
.NET attributes. Many existing .NET classes already are associated with type converters,
and PowerShell will seamlessly convert them to and from other types. Additionally, we
can associate a type with a type converter in the shell’s extended type system configu-
ration files.

4. PowerShell next tries to convert the original object to a string and to find and call a Parse()
method on the new object type that will create a new object from a string representation.

5. It then looks for a constructor on the new type that will accept an object of the original
type. If it finds one, it uses it to construct the new object.

6. After that, PowerShell looks for both explicit and implicit type cast operators on both
object types. Appropriate cast operators are compiled as static methods with the names
op_Explicit and op_Implicit for explicit and implicit casts, respectively. If the shell
finds an appropriate method, it calls the method and uses the returned object.

7. Finally, PowerShell checks if the original type implements the IConvertible .NET interface.
If it does, then the type can be converted to the basic types like int, double, decimal, and
so on.

Built-in Type Conversion Rules

PowerShell has several mechanisms for converting between objects that do not require the
conversion strategies listed in the previous section. There are well-known ways to convert one
object to another, and they are built in the language. Here they are:

• Every object can be converted to a PSObject. In fact, the shell does so automatically, and
most of the time, we are not holding real references to objects but are working with PSObject
instances that point to the actual object.

• Conversions to void return $null:

PS C:\> ([void] 5) -eq $null
True

Deshev_940-3C01.fm Page 27 Thursday, December 20, 2007 3:58 PM

28 CH AP T E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S

• We can convert all types of collections and objects to arrays. A collection here is defined
as any .NET type that implements the ICollection interface. The .NET framework has
many collection classes built in, and collections implemented by any programmer
implement that interface too. That means we can convert to an array from any collec-
tion. Here is how:

PS C:\> ([object[]] 5).GetType().FullName
System.Object[]
PS C:\> $strings = New-Object Collections.Specialized.StringCollection
PS C:\> ([object[]]$strings).GetType().FullName
System.Object[]

• We can convert all objects to Boolean values by treating all nonnull and nonempty
objects as true. We will discuss that in detail in Chapter 2.

• Anything can be converted to a string.

• IDictionary objects can be converted to Hashtable. The IDictionary interface in the
.NET framework is implemented by objects that maintain a mapping between a set of
key objects to a set of values. The Hashtable class is the most commonly used dictionary
object, and here is how we can convert an OrderedDictionary object to a Hashtable:

PS C:\> $dict = New-Object Collections.Specialized.OrderedDictionary
PS C:\> $dict["item1"] = 3
PS C:\> $hash = [Hashtable] $dict
PS C:\> $hash

Name Value
---- -----
item1 3

PS C:\> $hash.GetType().FullName
System.Collections.Hashtable
PS C:\> $dict.GetType().FullName
System.Collections.Specialized.OrderedDictionary

• “Converting” a variable to a PSReference creates a reference variable pointing to the
original. Modifying a reference value modifies the original:

PS C:\> $a = 3
PS C:\> $b = [ref] $a
PS C:\> $b.Value = 4
PS C:\> $b.Value
4
PS C:\> $a
4

Deshev_940-3C01.fm Page 28 Thursday, December 20, 2007 3:58 PM

CH A PT E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S 29

We will discuss references in greater detail in Chapter 5, because they are particularly
helpful when passing parameters to functions.

• A properly formatted string can be converted to an XML document:

PS C:\> $doc = [xml] "<root><item>1</item></root>"
PS C:\> $doc.root.item
1

• Script blocks can be converted to .NET delegates. Delegates are a special type of object
that point to a method or a block of code. They are typically involved in associating event
handler code with the event and are used by objects to fire an event. We usually need to
convert a script block to a delegate when working with a .NET type that can fire an event
that we want to consume.

A number of objects can be created or obtained by converting from a string that contains
a name, path, or a query. Here they are:

• Strings can be converted to character arrays:

PS C:\> [char[]]"chars"
c
h
a
r
s

• Strings can be turned to regular expressions. The string is treated as the match pattern:

PS C:\> ([regex] "a.*?b").GetType().FullName
System.Text.RegularExpressions.Regex

• Strings can also create WMI objects (I will demonstrate the power of those conversions
in Chapter 20, where we will work with WMI):

PS C:\> [wmisearcher]'Select * from Win32_Process'

Scope : System.Management.ManagementScope
Query : System.Management.ObjectQuery
Options : System.Management.EnumerationOptions
Site :
Container :

PS C:\> [WMI]'\\.\root\cimv2:Win32_Process.Handle=0'
ProcessName : System Idle Process
…
PS C:\> ([wmiclass] "Win32_Share").GetType().FullName
System.Management.ManagementClass

Deshev_940-3C01.fm Page 29 Thursday, December 20, 2007 3:58 PM

30 CH AP T E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S

• Strings can be converted to Active Directory entries too. The conversion process uses the
string as the DirectoryEntry path. Note how we use PSBase to get to the real object type
instead of the adapted view:

PS C:\> $user = [ADSI]"WinNT://./Hristo,user"
PS C:\> $user.PSBase.GetType().FullName
System.DirectoryServices.DirectoryEntry

• Strings can point to .NET types. The input string is treated as the type name. The conver-
sion works with the full type name. Again, we can omit the System namespace prefix:

PS C:\> [type] "System.Diagnostics.Process"

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True False Process System.Compon...

PS C:\> [type] "Diagnostics.Process"

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True False Process System.Compon...

Accessing Static Members
Type literals can be used for another important purpose: they are the only way to access a static
property or call a static method. The syntax requires us to separate the type literal and the member
name with a double colon (::). This is how we can get a static property value:

PS C:\> [datetime]::NowTuesday, September 04, 2007 9:25:38 AM

PS C:\> [datetime]::Today
Tuesday, September 04, 2007 12:00:00 AM

Calling static methods looks similar. In the following example, we create a double object by
manually calling the Parse method:

PS C:\> [double]::Parse("2.5")
2.5

Deshev_940-3C01.fm Page 30 Thursday, December 20, 2007 3:58 PM

CH A PT E R 1 ■ O B J E CT S AN D O B J E C T T Y P E S 31

Summary
PowerShell’s extended type system is really an impressive piece of work. It is very powerful and
complex, and the really remarkable thing about it is that it has not turned out too restrictive or
too newbie unfriendly. Users find their way around quickly because of the uniform access they
get to all types of objects through type adaptation and extension. The most commonly used
objects get pragmatic extensions that boost a scripter’s productivity and lower the learning
curve. The type conversion system silently transforms objects under the hood, adapting them
as necessary, thus saving valuable keystrokes and increasing script readability. All these assets
make the PowerShell language a formidable blend of a script language’s simplicity with the raw
power of .NET and Windows

Deshev_940-3C01.fm Page 31 Thursday, December 20, 2007 3:58 PM

33

■ ■ ■

C H A P T E R 2

Controlling Execution Flow

Our journey in the PowerShell programming language will now continue with a quick tour of
control flow. “Control flow” is a fancy term that computer scientists and programming language
pundits like to use when they mean simply telling your program what to execute next. Eventually,
all control-flow-related topics boil down to discussing conditional branches, like the if state-
ment, and looping or repeating an operation a number of times.

PowerShell offers a conventional approach to branching and looping by intentionally
implementing constructs that are similar to the ones found in the C language family. People
familiar with C, C++, C#, JavaScript or maybe even Visual Basic will feel at home, as the language
tries to mimic most of the statements present in those languages. Of course, there are some
differences, but they are usually offered in the form of enhancements. The basic C-inspired
syntax will work and not knowing the advanced forms of these operators will not stop anyone
from doing a fine job at scripting. But familiarity with one of these languages is not required:
we will start with the basic syntax. Learning the PowerShell control flow constructs will bring
an additional benefit to the newbie scripter—once you understand PowerShell control flow,
you will be able to read and understand the tons of automation examples written in VBScript
or JScript that can be found on the Web.

Conditional Expressions
Before you learn to branch your program execution according to some condition, you must
learn about conditional expressions. They are the means of checking if a condition is true, and
they are the primary tool used in statements like if, switch, for, and while, which we will look
into later in this chapter.

So, what is a conditional expression? Just like an arithmetic expression, a conditional one
is a set of operations that are evaluated in order to compute a result. However, conditional
expressions always evaluate to Boolean values, that is, they always return $true or $false. For
example, this is how to check if the variable $num contains a number that is less than five:

PS> $num = 4
PS> $num -lt 5
True

For now, treat the –lt operator as the way to check if the left-hand value is less than the
right-hand one. I will get to details about this and the other comparison operators in a minute.

A conditional expression is, after all, an expression, so we can include property references
and method calls:

Deshev_940-3C02.fm Page 33 Tuesday, January 22, 2008 6:44 AM

34 CH AP T E R 2 ■ CO N T R O L L IN G E X E CU T I ON FL O W

PS> $user = @{"Name"="John"; "Age"=30}
PS> $user.Age -lt 20
False
PS> $user.ContainsValue("John")
True

We can even include calls to PowerShell functions, cmdlets, and script blocks. For example,
we can start a notepad.exe process and then check if the number of running notepad.exe processes
is less than two:

PS> (Get-Process notepad).Length -lt 2
True
PS> notepad.exe
PS> (Get-Process notepad).Length -lt 2
False

The preceding code uses the Get-Process command to obtain all notepad.exe processes.
You can learn more about getting process details and managing processes in Chapter 14.

Comparing Values
Most programming languages use mathematical symbols to do value comparisons: <, >, <=, >=, =.
PowerShell is different in that instance. It tries to be first a shell and second a programming
language. All shells have the >, >>, and < operators reserved for command output and input
redirection and so does PowerShell. That made the language designers choose to use switches
as comparison operators. Switches look like the abbreviated operator names:

• -eq: The equal switch will return true if two objects are equal, otherwise, false:

PS> 3 -eq 3
True
PS> 3 -eq 4
False

• -ne: The not-equal switch is the inverse of the equality operator, and it exists primarily
for convenience so that we do not have to wrap equality tests in negation operations:

PS> 3 -ne 3
False
PS> 3 -ne 4
True

• -lt: This less-than switch will return true if the left-hand operand is less than the right-
hand one:

PS> 3 -lt 4
True

• -gt: The greater-than switch is the inverse of the less-than one; it will return true if the
left-hand operand has a greater value than the right-hand one:

PS> 5 -gt 4
True

Deshev_940-3C02.fm Page 34 Tuesday, January 22, 2008 6:44 AM

CH AP T E R 2 ■ CO N T R O L LI N G E X E CU T IO N FL O W 35

• -le: The less-than-or-equal switch tests if the first value is less than or equal to the
second one:

PS> 3 -le 4
True
PS> 3 -le 3
True

• -ge: The greater-than-or-equal switch checks if the first value is greater than or equal to
the second one:

PS> $a = 4
PS> $a -ge 4
True
PS> $a--
PS> $a -ge 4
False

The $a statement in the previous example is a variable reference. The variable gets assigned
the value 4 and is then compared to see if it is greater than or equal to four.

Strings can be compared too, so we can see if one is greater than another. The operation is
defined in terms of the alphabetical order, meaning strings are compared character by character.
If two strings start with the same character sequence, the shorter one is picked as the one of
smaller value. Here are several comparisons that illustrate the rules:

PS> "a" -lt "b"
True
PS> "a" -lt "ba"
True
PS> "aa" -lt "aaa"
True

A thing to keep in mind is that, by default, character casing is ignored when comparing
strings. That means that “John” equals “JOHN”:

PS> "John" -eq "JOHN"
True

This is a good default, as most of the time, we do not need case-sensitive comparisons. If
we do need them, we have to use the case-sensitive versions of the comparison operators: -ceq,
-clt, -cle, -cgt, and –cge. Here is how we can compare two strings that differ in their casing only:

PS> "john" -lt "JOHN"
False

The previous example returns false, because when doing a case-insensitive comparison,
the two strings are considered equal. Using the case-sensitive operator tells us that the lower-
case version is less than the uppercase one:

PS> "john" -clt "JOHN"
True

Deshev_940-3C02.fm Page 35 Tuesday, January 22, 2008 6:44 AM

36 CH AP T E R 2 ■ CO N T R O L L IN G E X E CU T I ON FL O W

We can verify this by changing the operator:

PS> "john" -cgt "JOHN"
False

The case-sensitive greater-than operator returned $false, so “"john” must truly be less
than “JOHN”. For the sake of completeness, let’s see that the two strings are not equal:

PS> "john" -ceq "JOHN"
False

PowerShell has explicit case-insensitive operators too. To use those, we use the prefix i
much in the same way that we used c in the case-sensitive ones: -ieq, -ilt, -ile, -igt, and
-ige. Why do we need this? What is the difference between the default comparison operators
and the case-insensitive ones? In other words, how does –eq differ than –ieq? The answer is
simple: there is absolutely no difference. Both the default and the case-insensitive operators do
the same thing. The value in using the case-insensitive versions of the operators is in increasing
script readability. Seeing a case insensitive operator in a string comparison clearly conveys the
intention of the original code author and makes code easier to understand.

Implicit Type Conversions
Remember that we can explicitly convert values from one type to another? PowerShell tries to
be helpful and will do many conversions automatically. The general rule is that an expression
that has two variables of different types will be evaluated after attempting to automatically
convert the right-hand value to the type of the left-hand object. To illustrate this, here is how
we can compare a string to a number:

PS> 2 -eq "2"
True

The “2” string got converted to the number 2. The inverse conversion will also work:

PS> "2" -eq 2
True

Remember the rule: implicit conversions always convert the right-hand value. That may
yield seemingly illogical results at first; for example, two variables may be equal or not equal
depending on the order of comparison:

PS> 2 -eq "02"
True
PS> "02" -eq 2
False

The first expression converts the “02” string into the number 2. That makes the two values
equal. The second one converts the number 2 into the string “2”. Of course, that is different
than “02”. The same model can be applied to the rest of the comparison operators:

PS> 5 -lt "04"
False
PS> "05" -lt 4
True

Deshev_940-3C02.fm Page 36 Tuesday, January 22, 2008 6:44 AM

CH AP T E R 2 ■ CO N T R O L LI N G E X E CU T IO N FL O W 37

Here, the number 5 is not less than 4 (the number that the “04” string is converted to). In
the second expression, alphabetically the string “05” comes before the string “4”, so the less-
than operation returns true.

Logic and Bitwise Operations
Quite often, we need to combine more than one condition into a complex expression. We do
that by using the logic operators. PowerShell supports the standard operations present in every
language:

-and

The -and operator returns $true if both operands evaluate to $true. Here is how we can use it
to check if a file has a .txt extension and its size is greater than 10KB at the same time:

PS> dir largetext.txt

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\PowerShell

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 9/13/2007 6:33 AM 11266 largetext.txt

PS> $file = Get-Item largetext.txt
PS> $file.Extension -eq ".txt" -and $file.Length -gt 10KB
True

Note that having any one of the conditions return $false will yield $false for the entire
expression:

PS> $file = Get-Item smalltext.txt
PS> $file.Extension -eq ".txt"
True
PS> $file.Length -gt 10KB
False
PS> $file.Extension -eq ".txt" -and $file.Length -gt 10KB
False

-or

The-or operator returns $true if any of its operands evaluates to $true. Here is how we can use
it to check if a file has been created or modified today:

PS> $file.CreationTime.Date -eq [datetime]::Today -or `
 $file.LastAccessTime.Date -eq [datetime]::Today
True

Deshev_940-3C02.fm Page 37 Tuesday, January 22, 2008 6:44 AM

38 CH AP T E R 2 ■ CO N T R O L L IN G E X E CU T I ON FL O W

We are using the CreationTime and LastAccessTime properties to get the actual times of
creation and access. To truncate the time part and use only the date, we get the DateTime Date
property.

-xor

-xor is the exclusive or operator. It returns $true if one of the operands is $true, but it will return
false if both of them are $true. We can use it, for example, to check if a file has a .txt extension
or is read only, but not both:

PS> attrib +r test.txt
PS> attrib -r test2.txt
PS> $file1 = Get-Item test.txt
PS> $file1.Extension -eq ".txt" -xor $file1.IsReadOnly
False
PS> $file2 = Get-Item test2.txt
PS> $file2.Extension -eq ".txt" -xor $file2.IsReadOnly
True

Note that we set the read-only attribute to test.txt and clear it for test2.txt before eval-
uating our -xor expressions.

-not

The -not, or !, operator is different in that it works with only one operand. All it does is return
the negative of its operand: if the input is $true, it will return $false, and vice versa. Note that
this operator has two forms: –not, the switch-based one, and the ! prefix. The latter is again a
tribute to the C language family, where all languages use the exclamation point as a negation
operator. Using one form over the other is a matter of preference. Let’s now check that a file is
not read only:

PS> $file = Get-Item test2.txt
PS> $file.IsReadOnly
False
PS> -not $file.IsReadOnly
True
PS> !$file.IsReadOnly
True

Note that even the switch form of the operator has to be placed before the operand.
PowerShell includes a bitwise version of the –and and –or operations: the –band and –bor

operators. The bitwise operations work on integers only. They go over each bit in one of the
numbers and compare it with the corresponding bit in the other number. The result is an
integer that has its bits set in those positions where the bit operations returned $true. Although
PowerShell does not support binary number literals, binary operations are best understood if
we treat all the numeric input as binary. Here is how we can use –band to and all the bits of the
numbers 3 and 1:

PS> 3 -band 1
1

Deshev_940-3C02.fm Page 38 Tuesday, January 22, 2008 6:44 AM

CH AP T E R 2 ■ CO N T R O L LI N G E X E CU T IO N FL O W 39

This needs some explanation. The number 3 is represented by the binary number 11. 1 is
represented as 01. –band goes over each of the bits and, in our example, sets the rightmost bit
only, as the rightmost position is the only one that contains two ones.

 11
-band 01
= 01

Now, let’s look at how –bor works:

PS> 2 -bor 1
3

The number 2 is 10 in binary. Again, 1 is 01. The binary or operation will yield 11 or a
decimal 3.

 10
-bor 01
= 11

Why bother with binary numbers and bitwise operations? The truth is that bitwise opera-
tions are pretty rare in scripting languages. You will need them only when you interface with
the outside world. For example, you might have to talk with a program that returns result flags
as a number, and to correctly test that a flag is set, you have to use a bitwise and operation. The
most common case when you will need that is when you interact with a .NET object that will
return a Flags enumeration. Those enumerations’ numeric values are carefully chosen so that
they occupy different bits, and they can be combined using binary or operations so that a single
number can contain several values. The first example of such an enumeration that comes to mind
is a file attribute. A FileInfo object’s Attributes property will return a System.IO.FileAttributes
enumeration whose values are as shown in Table 2-1.

Table 2-1. System.IO.FileAttributes Values in Hexadecimal

Name Value

ReadOnly 0x01

Hidden 0x02

System 0x04

Archive 0x20

Directory 0x10

Device 0x40

Normal 0x80

Temporary 0x100

SparseFile 0x200

ReparsePoint 0x400

Compressed 0x800

Deshev_940-3C02.fm Page 39 Tuesday, January 22, 2008 6:44 AM

40 CH AP T E R 2 ■ CO N T R O L L IN G E X E CU T I ON FL O W

Hexadecimal is very convenient when working with binary values because a single hex
digit represents four bits, or numbers from 0 to 15. Take the ReadOnly, Hidden, and System
values for example. Their values in binary are

ReadOnly: 0001
Hidden: 0010
System: 0100

When you get a value of 3 for the rightmost hex digit, you know that the file is both ReadOnly
and Hidden, because 1 –or 2 equals 3 or 11 in binary. Now, let’s use this to test if a file is read only:

PS> $file = Get-Item c:\pagefile.sys –force
PS> $file.Attributes -band 0x01
0
PS> $file.Attributes -band 0x02
2
PS> $file.Attributes -band 0x04
4

The first operation returns 0; that means that the file is not read only. The next two opera-
tions return nonzero values; that means that the corresponding bits are set; in other words, the
file is both hidden and system. Note that we had to use the –force switch when calling Get-Item
to get the hidden file.

To test that a file is both hidden and system, you can –band its attributes with the value 6,
the result of 2 –bor 4:

PS> $file.Attributes -band 0x06
6

It is always best to choose readability over compactness, so the preceding example is
better written as:

PS> $file.Attributes -band (0x02 -bor 0x04)
6

Or even better, we can introduce variables that explain the intent:

PS> $hidden = 0x02
PS> $system = 0x04
PS> $file.Attributes -band ($hidden -bor $system)
6

Offline 0x1000

NotContentIndexed 0x2000

Encrypted 0x4000

Table 2-1. System.IO.FileAttributes Values in Hexadecimal (Continued)

Name Value

Deshev_940-3C02.fm Page 40 Tuesday, January 22, 2008 6:44 AM

CH AP T E R 2 ■ CO N T R O L LI N G E X E CU T IO N FL O W 41

Boolean Conversions
The bitwise operators and many more operations do not return a Boolean value. They return a
number. How do we convert those values to $true or $false? No problem! PowerShell does
that automatically. The short version of the rules for Boolean conversions is that any nonempty
value will be converted to $true. The “nonempty” concept can be stretched quite a lot, so let’s
define it. PowerShell will implicitly convert to a Boolean value when needed, but we will use an
explicit conversion to force a conversion and better see the results. We can force the conver-
sion by using the [bool] type literal before any value. Here are the conversion rules:

• Any number that has a value different than 0 will be converted to $true:

PS> [bool] 1
True
PS> [bool] 5
True
PS> [bool] 5000
True
PS> [bool] 0
False

That means you can use numbers in conditional expressions, as they will be converted
for you:

PS> $true -and 5000
True

• Strings that have a nonzero length will be converted to $true:

PS> [bool] "true"
True
PS> [bool] "false"
True
PS> [bool] "something else"
True
PS> [bool] ""
False

• Collections that have at least one item are equal to $true:

PS> [bool] (1,2)
True
PS> [bool] ("one", "two")
True
PS> [bool] @()
False

• Other objects are converted to $true unless they are $null. Assuming that Microsoft
Word is running, here is how its object gets converted to a Boolean value:

PS> [bool] (Get-Process winword)
True

Deshev_940-3C02.fm Page 41 Tuesday, January 22, 2008 6:44 AM

42 CH AP T E R 2 ■ CO N T R O L L IN G E X E CU T I ON FL O W

• The same holds true for any object—only $null values ever get converted to false:

PS> $user = @{Name="John"; "Age" = 30}
PS> [bool] $user
True
PS> [bool] $null
False

The code in the preceding examples uses explicit type casts just to illustrate what Power-
Shell does under the hood.

The implicit conversions can be used to do a really compact conversion to Boolean by
using a clever negation trick—double negation:

PS> !!2
True
PS> !!"test"
True
PS> !!0
False
PS> !!$null
False
PS> !!(Get-Process winword)
True

See the two exclamation marks? The first one converts the original value to Boolean and
then negates it. The second one negates again and, in effect, cancels the previous negation,
returning the original value converted to Boolean. I would like to stress again the importance
of readability over compactness: use the double negation trick in quick tests on the command
line, but prefer explicit casts in larger scripts, so that the intent of the code becomes immedi-
ately clear.

The Power of String Conversions
We already discussed the –like and –match string operators in Chapter 1. While it is true that we
can use them to test if a string is composed according to a specific pattern or is of a form that
we want to detect, it is really useful when you combine that with converting various objects to
strings. This way, we can make our conditional expressions much more compact and expressive.
Let’s get back to our previous example that checked file attributes. The System.IO.FileAttributes
enumeration can be easily converted to a string. When we do that, the string will contain the
names of the set bits. This is how that enumeration looks for a typical pagefile.sys file:

PS> $file = Get-Item C:\pagefile.sys -force
PS> $file.Attributes
Hidden, System, Archive
PS> [string] $file.Attributes
Hidden, System, Archive

We do not need the explicit cast—PowerShell will do that automatically:

PS> $file.Attributes
Hidden, System, Archive

Deshev_940-3C02.fm Page 42 Tuesday, January 22, 2008 6:44 AM

CH AP T E R 2 ■ CO N T R O L LI N G E X E CU T IO N FL O W 43

Now, we can use the –like operator to test if the file is hidden or system:

PS> $file.Attributes -like "*Hidden*"
True
PS> $file.Attributes -like "*System*"
True

What if we want to test if the file is hidden or system? We can use –or:

PS> $file.Attributes -like "*Hidden*" -or $file.Attributes -like "*System*"
True

This is too wordy. We can use a regular expression with an alternation pattern to test both
things at the same time. We have to switch to the –match operator:

PS> $file.Attributes -match "Hidden|System"
True

The expression is equivalent to the previous one. We have just moved the –or operation to
the alternation operator inside the regular expression.

Okay, which operator should we use when working with flag enumerations: bitwise operators
or string matches? There is really no right answer, and it all boils down to matters of preference.
Bitwise operations feel a bit more robust, as it is extremely unlikely that future versions of the
framework will change the enumeration values. Checking an enumeration value using bitwise
operation is the better solution performancewise, as it will be faster than the string operators.
The string version is robust enough, though—the enumeration string values are not likely to
change either. Using strings gets us a more compact solution, and some people may argue that
it is more readable too.

Collections and Conditional Expressions
Most programming languages treat collections as single objects. They allow us to write condi-
tional expressions by checking properties of the collection object or by using one of the objects
contained inside the collection. PowerShell adds an interesting twist to this. It allows us to use
a collection in the left-hand side of a conditional expression. When the shell sees that, it applies
the conditional expression to each of the members of the collection. The result is a new collec-
tion that contains the members that have been evaluated to $true using that operation. In effect,
this will filter the collection. Here is how we can use that:

PS> 1,2,3,4 -lt 3
1
2
PS> 1..5 -le 4
1
2
3
4

We can use all conditional operators with collections containing any type of objects. Here
is how to get only strings equal to “John”:

Deshev_940-3C02.fm Page 43 Tuesday, January 22, 2008 6:44 AM

44 CH AP T E R 2 ■ CO N T R O L L IN G E X E CU T I ON FL O W

PS> "John", "Mike", "John", "Jane" -eq "John"
John
John

Of course, all implicit conversions remain in effect:

PS> 3,4,5 -eq "4"
4

Branching Instructions
Branching instructions bear that name, because they split program execution according to a
conditional statement. Typically they specify several possible execution flows. At the time of
execution, a statement is evaluated, and a code path is chosen according to the value returned
from that statement. PowerShell offers two branching instructions: if/else that allows us to
choose one of two code paths, and switch that selects and executes one of many alternatives.

Simple Branching: if/else
The simplest branching instruction in many mainstream programming languages is the if
statement. It evaluates a conditional expression and executes one block of code if the result is
true, another if false. The general form of the statement is

if (<conditional>)
{
 <true code block>
}
else
{
 <false code block>
}

The else part is optional. Omitting it will execute nothing if the conditional expression
evaluates to $false. Here is an example that displays a different message if the file size is
greater than 10KB:

PS> $file = Get-Item largetext.txt
PS> if ($file.Length -gt 10KB){
 Write-Host "More than 10 kilobytes"
 }
 else{
 Write-Host "Less than 10 kilobytes"
 }

More than 10 kilobytes

if statements can be used for more complex branching if we nest several of them. This is
how we can display a different message if a file is larger than 10KB, between 10KB and 5KB, and
less than 5KB:

Deshev_940-3C02.fm Page 44 Tuesday, January 22, 2008 6:44 AM

CH AP T E R 2 ■ CO N T R O L LI N G E X E CU T IO N FL O W 45

PS> $file = Get-Item smalltext.txt
PS> if ($file.Length -gt 10KB){
 Write-Host "More than 10 kilobytes"
 }
 else{
 if ($file.Length -lt 5KB){
 Write-Host "Less than 5 kilobytes"
 }
 else{
 Write-Host "Between 5 and 10 kilobytes"
 }
 }

Between 5 and 10 kilobytes

Nesting if statements quickly becomes unbearable, as it adds more noise than real value,
and that is why PowerShell provides a shortcut—the elseif optional part to the if statement.
It can be used to evaluate another condition, and if true, execute its associated branch. If all
conditions evaluate to $false, the else part gets evaluated. Here is how we can rewrite the
above using elseif:

PS> $file = Get-Item smalltext.txt
PS> if ($file.Length -gt 10KB){
 Write-Host "More than 10 kilobytes"
 }
 elseif ($file.Length -lt 5KB){
 Write-Host "Less than 5 kilobytes"
 }
 else{
 Write-Host "Between 5 and 10 kilobytes"
 }

Between 5 and 10 kilobytes

Multiple Branches and the switch Statement
Like many other PowerShell language features, the switch statement comes from the C language.
The C version takes a number and executes a different action according to the number value.
PowerShell takes that a bit further and allows using all types of objects. The general form of a
switch statement looks like this:

switch (<variable>)
{
 value1 { <action1> }
 value2 { <action2> }
 ...
 default { <default action}
}

Deshev_940-3C02.fm Page 45 Tuesday, January 22, 2008 6:44 AM

46 CH AP T E R 2 ■ CO N T R O L L IN G E X E CU T I ON FL O W

See the mapping between expected values and the respective actions? The default part
is executed if the actual value matches none of the expected ones. Here is how to get the digit
name from a number using a switch statement:

PS> switch (3){
 1 { "one" }
 2 { "two" }
 3 { "three" }
 default { "unknown digit" }
 }

three
PS> switch (7){
 1 { "one" }
 2 { "two" }
 3 { "three" }
 default { "unknown digit" }
 }

unknown digit

An interesting peculiarity of the switch statement is that it will evaluate all blocks whose
value matches:

PS> switch (1){
 1 { "digit" }
 "1" { "string" }
 }

digit
string

To stop evaluation after the current block, you have to use the break statement, which will
exit the switch evaluation:

PS> switch (1){
 1 { "digit"; break }
 "1" { "string" }
 }

digit

You’re probably already guessing how switch compares values during execution. That’s
right: by default, it uses the –eq operator. That means type conversions are done implicitly, and
string comparisons will be case insensitive. To force using a case-sensitive comparison or using the
–ceq operator, you have to pass the –casesensitive switch:

PS> switch ("john"){
 "john" { Write-Host "lowercase" }
 "JOHN" { Write-Host "uppercase" }
 }

Deshev_940-3C02.fm Page 46 Tuesday, January 22, 2008 6:44 AM

CH AP T E R 2 ■ CO N T R O L LI N G E X E CU T IO N FL O W 47

lowercase
uppercase
PS> switch -casesensitive ("john") {
 "john" { Write-Host "lowercase" }
 "JOHN" { Write-Host "uppercase" }
 }

lowercase

-casesensitive is not the only operator that switch can use. It also supports the –wildcard
and –regex switches that will match a value using the –like and –match operators respectively:

PS> switch -wildcard ("johnson"){
 "john*" { Write-Host "starts with john" }
 "j*son" { Write-Host "starts with j, ends with son" }
 }

starts with john
starts with j, ends with son

Here is how to do a similar thing with regular expressions:

PS> switch -regex ("johnson"){
 "(john.*)|(.*son)" { Write-Host "starts with john or ends with son" }

 }

starts with john or ends with son

Combining –wildcard or –regex with –casesensitive will make switch use the –clike and
-cmatch operators, respectively, to do case-insensitive comparisons:

PS> switch -regex -casesensitive ("JOHNSON"){
 "(john.*)|(.*son)" { "Starts with john or ends with son" }
 default { "No match" }
 }

No match

The switch statement can work for collections too. It goes over all members of the collec-
tion, executes the script block that matches the member value, and returns a collection that
contains the return values of all switch operations. Going back to our example that converts a
number to a string with the digit name, here is how we can transform multiple digits:

PS> switch (3, 2, 1, 7){
 1 { "one" }
 2 { "two" }
 3 { "three" }
 default { "unknown digit" }
 }

Deshev_940-3C02.fm Page 47 Tuesday, January 22, 2008 6:44 AM

48 CH AP T E R 2 ■ CO N T R O L L IN G E X E CU T I ON FL O W

three
two
one
unknown digit

The input collection can come from a file too. Passing the –file switch will get the file
contents and will cause PowerShell to treat it as a collection, using each line as a member. The
example below writes four digits to a file and then uses a switch statement to read them back
and return a different value for each digit:

PS> (3,2,1,7) | Set-Content digits.txt
PS> switch -file digits.txt{
 1 { "one" }
 2 { "two" }
 3 { "three" }
 default { "unknown digit" }
 }

three
two
one
unknown digit

Loops: Repeatedly Executing Blocks of Code
Loops are the last piece of the control flow puzzle. They allow us to repeatedly execute a block
of code, usually while a condition is satisfied. We can use them to repeat an action many times,
to walk over a collection of objects and perform an action on each and every one of them, wait
indefinitely for an external condition to become true, and much more.

The Simplest Loop: while
What could be simpler than the ability to repeat something while a condition is true? The while
loop allows us to do exactly that. Its general form is

while (<condition>)
{
 <action block>
}

Here is how to use it to wait for the notepad process to exit:

PS> while (Get-Process notepad -ErrorAction SilentlyContinue){
 Write-Host "Waiting for notepad to exit"
 sleep 1
 }

Deshev_940-3C02.fm Page 48 Tuesday, January 22, 2008 6:44 AM

CH AP T E R 2 ■ CO N T R O L LI N G E X E CU T IO N FL O W 49

Waiting for notepad to exit
Waiting for notepad to exit
Waiting for notepad to exit

The Get-Process notepad -ErrorAction SilentlyContinue statement is executed in every
iteration, and it is converted to a Boolean value. The Get-Process cmdlet will raise an error if it
cannot find a process, so we pass the –ErrorAction SilentlyContinue parameter to suppress
the error and just get a $null value back if no process is found; the $null value will be converted
to $false, and the loop will exit. We do not want to hog the entire CPU time in useless looping
while waiting for the process to exit, so we suspend execution for one second at the end of each
loop iteration by calling the sleep command.

The while loop body will never execute if the condition initially evaluates to $false. To
have a loop that is guaranteed to execute its body at least once, we have to use the do-while form:

PS> $i = 5;
PS> do{
 Write-Host 'incrementing $i'
 $i++
 }while ($i -le 1)

incrementing $i

Note that the body executed once even with the condition being false at the time we entered
the loop body.

Sometimes, it feels awkward to artificially negate a condition to loop until a condition
becomes true. PowerShell provides a do-until loop that helps us in such cases:

PS> $i = 0;
PS> do{
 Write-Host "`$i = $i"
 $i++
 }until ($i -ge 3)

$i = 0
$i = 1
$i = 2

The do-until loop behaves in the same way as do-while except that the condition is
negated. Here is the same loop written using do-while with a negated condition:

PS> $i = 0;
PS> do{
 Write-Host "`$i = $i"
 $i++
 }while (-not ($i -ge 3))

$i = 0
$i = 1
$i = 2

Deshev_940-3C02.fm Page 49 Tuesday, January 22, 2008 6:44 AM

50 CH AP T E R 2 ■ CO N T R O L L IN G E X E CU T I ON FL O W

Loops and Counters: The for Loop
As you have seen from the previous examples, many loops involve initializing a counter vari-
able that gets modified in every loop iteration and is, in turn, used in a conditional expression
that serves as the loop exit condition. This pattern repeats quite often, and that is why the
PowerShell language has the for loop construct. Its general form is

for (<initializer>; <exit condition>; <step action>)
{
 <action>
}

The loop is prepared by executing the initializer action. Usually, this involves initializing a
counter variable. Every loop iteration executes the step action, which typically increments or
decrements the counter variable. Every iteration is executed if and only if the exit condition
returns true when it’s evaluated. Here is how to write the while loops you saw before that
iterate from zero to two by using a for loop:

PS> for ($i = 0; $i -lt 3; $i++){
 Write-Host "`$i = $i"
 }

$i = 0
$i = 1
$i = 2

That is much more compact than the while version. Now that I’ve mentioned while, you
can see that the for loop has a superset of while’s functionality. In other words, while loops can
be emulated using for loops. The initializer and step portions of a for loop are optional, and
omitting them gets us with an equivalent of while:

PS> $i = 0;
PS> for (;$i -lt 3;){
 Write-Host "`$i = $i"
 $i++
 }

$i = 0
$i = 1
$i = 2

Note that we still need the semicolons to indicate that the initializer and step expressions
are empty and the expression passed inside the parentheses should be used as the loop exit
condition.

Executing Actions on All Objects in a Collection:
The foreach Loop
Quite often, we have to write code that walks over a collection and acts on each of its members.
Here is how we can do that with a for loop:

Deshev_940-3C02.fm Page 50 Tuesday, January 22, 2008 6:44 AM

CH AP T E R 2 ■ CO N T R O L LI N G E X E CU T IO N FL O W 51

PS> $items = 2,3,4
PS> for ($i = 0; $i -lt $items.Length; $i++){
 $item = $items[$i]
 Write-Host $item
 }

2
3
4

Some parts of the loop will always be the same no matter what collection we are using: the
$i variable that contains the index of the current item, the $i –lt $items.Length exit condi-
tion, the increment statement used as a loop step, and the $item variable initialization with the
current item. Realizing that, the PowerShell language designers have added another looping
facility: the foreach loop. The general form looks like this:

foreach ($item in $collection)
{
 <action>
}

Note that foreach requires us to name the variable that contains the current item and
provide the input collection. That is it! The index initialization, the exit condition, and the
index increment are all hidden under the hood. Here is how we can use foreach to better write
the previous loop:

PS> $items = 2,3,4
PS> foreach ($item in $items){
 Write-Host $item
 }

2
3
4

Interestingly enough, foreach is a reserved word in PowerShell, and at the same time, it is
used as an alias for the ForEach-Object cmdlet. The good news is that the PowerShell language
parser is smart enough to detect when you are using a foreach loop and when you are creating
a pipeline that uses ForEach-Object. I will cover object pipelines and the ForEach-Object cmdlet in
the next chapter.

Controlling Loop Execution: break and continue Statements
Loops do not necessarily have hard exit conditions. We might wish to force exiting a loop if we
detect something bad or just wish to optimize our program and avoid excessive iteration. We
can do that by using the break statement. Here is how to use it to get the first file that has a .log
extension in the current folder:

Deshev_940-3C02.fm Page 51 Tuesday, January 22, 2008 6:44 AM

52 CH AP T E R 2 ■ CO N T R O L L IN G E X E CU T I ON FL O W

PS> foreach ($file in dir){
 if ($file.Name -like "*.log"){
 Write-Host $file.Name
 break
 }
}

kill.log

Since we need the first file only, there is no point in continuing iterating over the collection
once we find it. That is why we exit the loop using the break statement.

Quite often, we want to skip executing the rest of the loop body if a condition is true. The
most common case is when we iterate over a collection, perform actions on most of the items,
and wish to skip some of the items. We can do that using the continue statement. It behaves in
a way similar to break, with the only difference that it does not exit the loop—it exits the current
iteration only and execution skips to the next iteration. Here is how we can use continue to
walk over a collection writing all odd numbers to the console and skipping the even ones:

PS> foreach ($item in 1..5){
 if ($item % 2 -eq 0){
 continue
 }
 Write-Host $item
 }

1
3
5

We are using the modulo operator, %, to check if a number is even or odd. Even numbers
are divisible by two and yield zero as their modulo two value.

break and continue have some advanced uses: they can be given a loop label, which will
instruct them to exit or go to the next iteration for the loop in question. This is useful when you
have nested loops and wish to control the outer loop from the inner loop body. Here is an
example of two nested foreach loops:

PS> foreach ($outerItem in 1..3){
 Write-Host "outerItem: $outerItem"

 foreach ($innerItem in 1..3){
 Write-Host "innerItem: $innerItem"
 break;
 }
 }

Deshev_940-3C02.fm Page 52 Tuesday, January 22, 2008 6:44 AM

CH AP T E R 2 ■ CO N T R O L LI N G E X E CU T IO N FL O W 53

outerItem: 1
innerItem: 1
outerItem: 2
innerItem: 1
outerItem: 3
innerItem: 1

Note how the inner loop iterates only once for each outer loop iteration. That is because
the break statement terminates the loop after the first Write-Host statement. What if we want
to exit the outer loop instead of the inner one? We have to label the outer loop and use the label
when executing break:

PS> :outerLoop foreach ($outerItem in 1..3){
 Write-Host "outerItem: $outerItem"

 foreach ($innerItem in 1..3){
 Write-Host "innerItem: $innerItem"
 break outerLoop;
 }
 }

outerItem: 1
innerItem: 1

This time both the outer and inner loops iterate only once. The inner break statement exits
the outer loop, effectively terminating execution.

We can use continue with labels too. Here is what happens when we continue the next
outer loop iteration from within the inner loop:

PS> :outerLoop foreach ($outerItem in 1..3){
 Write-Host "outerItem: $outerItem"

 foreach ($innerItem in 1..3){
 Write-Host "innerItem: $innerItem"
 continue outerLoop;
 }
 }

outerItem: 1
innerItem: 1
outerItem: 2
innerItem: 1
outerItem: 3
innerItem: 1

The result is the same as with our first example, because continuing the outer loop effectively
breaks out of the inner one.

Deshev_940-3C02.fm Page 53 Tuesday, January 22, 2008 6:44 AM

54 CH AP T E R 2 ■ CO N T R O L L IN G E X E CU T I ON FL O W

Summary
This chapter covered the second part of the PowerShell essentials. Armed with the knowledge
about the type system that you acquired in Chapter 1 and knowing how to control your program
execution by using conditional expressions in branches and loops, you are now ready to start
writing fully functional commands that help you in your daily activities.

The next chapter will raise the level of abstraction with regard to looping over collections
of objects and will introduce you to object pipelines. Taking the time to practice working with
loops, branches, and conditional expressions before moving on may be worthwhile, because
mastering these topics is the key to understanding the automatic operations that happen when
we compose pipelines.

Deshev_940-3C02.fm Page 54 Tuesday, January 22, 2008 6:44 AM

55

■ ■ ■

C H A P T E R 3

The Object Pipeline

The primary use for a shell is to run commands. The shell interprets user input and launches
one or more commands according to that. A user who wants to specify a complex action to perform
has to invoke the right commands in the right order with the right data. Because creating a
complex command that does many things and is flexible enough to meet everyone’s needs is
difficult, most shells move away from monolithic do-it-all commands and instead concentrate
on providing small tools that can combine their power into something big. Each of those tools
usually does one specific job extremely well. For example, a hypothetical command that searches
through all files with the .txt extension in a project folder and displays all occurrences of the
“financial report” phrase is hard to make very flexible. What if we want to search in files modi-
fied last week? It is much easier to create two commands: Find-File to finds files according to
criteria such as file extension, modification date, and so on and Search-Contents to search for
words or phrases inside files.

The biggest benefit of separating the commands is that, this way, they can be used inde-
pendently and in conjunction with other commands. This opens up a lot of possibilities for
new uses that the original developers may not have even imagined. Bigger and more complex
functionality emerges from those uses. The driving force behind that process, and its primary
enabler, is an intuitive and simple mechanism for composing commands and passing data
among them. The most powerful way to do pass data is to chain commands into pipelines:
pipelines allow us to send one command’s output as a second command’s input. Having pipe-
lines in place means that the simplest implementation for our example search command is to
send Find-File’s output, a list of file names, directly to Search-Text and to perform the a text
search on the found files.

Text-Based Pipelines
The pattern of chaining commands has been in practice for quite some time, and it has been
implemented in most shells like so: each command reads text as its input and, in turn, gener-
ates text as its output. This is very easy to implement and provides a basic way to pass data
around. Unfortunately, using text as the data transport has several drawbacks. The most impor-
tant one is that there is no standard data format. Each command is free to generate whatever
text it wishes, and that makes consuming data hard, as we have to parse the input and make
something meaningful out of it. It is considered good form among command developers to
generate output that is easy to parse, as that makes a tool more usable. Of course, output that
is easiest for a machine to parse is not always in the best form for humans to read. To avoid
having to make a trade-off of having either a machine-parsable or human-readable output,

Deshev_940-3C03.fm Page 55 Monday, January 28, 2008 9:56 AM

56 CH AP T E R 3 ■ T HE OB J E CT P IP E L I N E

developers provide switches and command-line options that control the output format according
to the data consumer.

Most shells solve the parsing problem by providing helper commands that can extract data
from text by applying common operations. Some of those tools follow:

• grep or findstr searches for lines that match a regular expression.

• sed allows users to edit the stream of text, such as replacing certain strings with some-
thing else.

• awk treats text as a table and splits cells according to a separator, such a comma or tab.

Using commands like the previous ones may solve the problem but tends to create fragile
solutions, as the commands may not always format text the way you expect. Handling error
conditions is the most obvious example. Few text-based programs return a proper error code
when something bad happens, and often, you are left parsing the returned text to figure out
what went wrong. This approach is extremely brittle, as you have to be aware of all error messages
and be able to parse each one of them. Even if you succeed, your code may fail in multilingual
environments. A script that, for example, looks for messages of the sort “Error type 3” might get
a “Fehlerart 3” message when run on a machine localized in German. Of course, we should not
forget the possibility that a different parameter or a new version of the command may easily
break your script by changing the format of the emitted error text. Many software developers
try to keep backward compatibility with new releases of their products, but the format of the
text messages is usually considered safe to change.

Another major inconvenience is that you have to learn regular expressions for use with
tools like grep. Regular expressions are a separate language and particularly hard to learn. The
sed and awk commands each have their own languages too. You certainly can do your job using
just text, but you’d end up creating complex pipelines that look like Klingon to the uninitiated.
The really sad part, though, is that you’d spend most of your time manipulating text instead of
concentrating on the task at hand.

Object-Based Pipelines
Now that you’ve seen some of the serious limitations in passing text between commands, we
can focus on a solution that will eliminate the need to do so using PowerShell’s approach to
pipelining. PowerShell postulates that each command—in PowerShell parlance, cmdlet—will
be a .NET object that satisfies a contract and has a standard interface. Building on .NET allows
the shell to pass .NET objects instead of text. This thing is huge! It means that we no longer have
to generate parsable text, nor do we have to parse text coming from another program. The pipeline
is not a text stream; it is a full-blown collection containing real, live objects. Those objects
expose a set of properties and methods that already contain any necessary information in an
easy-to-access form. There’s no need to get the value from the third column of a text table that
uses commas as a separator when you can just get the Name property.

Having objects at your disposal makes commands such as grep, awk, and sed irrelevant.
Yet, we need analogues that work well with objects. We want to filter a collection according to
some criteria, get a subset of an object’s properties, and even add our own properties. Most of
the time, we also want to treat a collection of objects like a database table and query it to extract
information. PowerShell introduces several cmdlets that help us with that task:

Deshev_940-3C03.fm Page 56 Monday, January 28, 2008 9:56 AM

C HA P TE R 3 ■ T H E O B J E CT P I PE L IN E 57

• ForEach-Object, or just foreach, allows you to execute an action on each item in the
pipeline. The result is a new collection that contains the return values from all actions.
Here is an example that multiplies all numbers in a collection by 2 and returns a new
collection with the results:

PS> 1,2,3 | ForEach-Object {$_ * 2}
2
4
6

• Where-Object, aliased as where or just ?, will filter a collection and return only items that
match a condition. The name comes from the databases world, where the SQL clause
that filters a data table is called WHERE. Let’s use it to get all strings that start with “Error”:

PS> "Error 2","John","Mike","Error 5" | Where-Object {$_ -like "Error*"}
Error 2
Error 5

The preceding two operations are the essentials we need for manipulating our objects.
Note that we only need two operations and not the text-based commands to extract numbers
or quoted strings in the first place. All that because our input has already been parsed by the
shell into a collection of objects!

Besides the essentials, PowerShell comes with several additional cmdlets that make life
even easier for us:

• Select-Object, aliased as select, will create a collection of objects that contain a subset
of properties of the original objects’ properties. Again, the name comes from the SQL
language: SELECT is the operator that defines which table columns will be retrieved. Suppose
we are interested in the physical memory a process occupies. Here is how to get it by
displaying just the ProcessName and WS (working set) properties for the WINWORD process:

PS> Get-Process winword | Select-Object ProcessName,WS

ProcessName WS
----------- --
WINWORD 47812608

• Sort-Object, also known as sort, is a handy operation that sorts a collection on one or
more properties Apart from basic sorting, it also supports advanced scenarios: want to
use the French culture string comparison rules for your sorts? No problem! Here is an
example command:

PS> "cote", "côte", "coté", "côté" | Sort-Object -Culture "fr-FR"
cote
côte
coté
côté

Deshev_940-3C03.fm Page 57 Monday, January 28, 2008 9:56 AM

58 CH AP T E R 3 ■ T HE OB J E CT P IP E L I N E

• Tee-Object, shortened to tee and named after the letter “T”, will forward what it has
been given to the next command and store the current pipeline into a file or variable.
The command is an excellent tool for preserving a collection at some stage in the pipe-
line before passing it to the rest of the commands. Here is how we can save our original
unsorted collection in the $unsorted variable just before sorting:

PS> 3,2,1 | Tee-Object -variable unsorted | Sort-Object
1
2
3
PS> $unsorted
3
2
1

• Group-Object, or group, splits the objects into several groups according to a property
value. Want to group a number of files according to their extensions? Here is how:

PS> dir | Group-Object -property Extension

Count Name Group
----- ---- -----
 1 .log {kill.log}
 4 .txt {test.txt, test2.txt, test3.txt, test4.txt}

• Measure-Object calculates statistics about the collection, providing an easy way to get
the minimum, maximum, average, and sum of a property value. The command is ideal
for displaying quick statistics about an array of numbers:

PS> 1,2,3 | Measure-Object -Sum -Max -Min -Average

Count : 3
Average : 2
Sum : 6
Maximum : 3
Minimum : 1
Property :

• Compare-Object, aliased as diff, compares two objects or collections and reports on
their differences:

PS> diff (1,2,3) (1,2,4)

 InputObject SideIndicator
 ----------- -------------
 4 =>
 3 <=

Deshev_940-3C03.fm Page 58 Monday, January 28, 2008 9:56 AM

C HA P TE R 3 ■ T H E O B J E CT P I PE L IN E 59

Having commands that act on objects will require us to have a means of manipulating
those objects: we need an analogue to the regular expressions and helper tools for text manip-
ulation. When dealing with objects, we have to provide instructions using a programming
language that will allow us to access, create, and modify objects. PowerShell lets us wrap those
instructions in script blocks. Blocks are objects, similar to procedures or functions. A block’s
body contains one or more instructions, which can be executed several times with different
parameters.

Processing Collections Using ForEach-Object
PowerShell provides language features for iterating over collections using the for operator.
However, its imperative nature often makes iteration clumsy and error prone, as we usually
have to repeat the same loop code over and over again. The ForEach-Object cmdlet minimizes
the repetition by applying an action to each object, collecting the results into a new collection.

At a bare minimum, ForEach-Object requires two inputs: a collection, usually piped in
from the previous command, and an action. Actions are expressed as script blocks. To para-
phrase the old proverb, an example is worth a thousand words, so here is how we can get the
file sizes for all files in the current folder by passing a script block that returns the Length property
for a given object:

PS> dir

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\PowerShell\tmp

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 7/7/2007 11:33 PM 4 test.txt
-a--- 7/7/2007 11:34 PM 12 test2.txt
-a--- 7/7/2007 11:33 PM 4 test3.txt
-a--- 7/7/2007 11:34 PM 14 test4.txt

PS> dir | ForEach-Object { $_.Length }
4
12
4
14

Note the $_ special variable! Other than bringing tears to Perl fans’ eyes, it serves an impor-
tant purpose: by convention, it keeps a reference to the current object. ForEach-Object works
by looping over all objects, setting up the $_ variable and calling the script block.

Quite often, an iteration process needs some initialization and a good finish after we are
done with all objects. We can accomplish that by passing two script blocks as the begin and end
parameters. Here is an ad hoc reporting technique that goes over all files in the current directory:

Deshev_940-3C03.fm Page 59 Monday, January 28, 2008 9:56 AM

60 CH AP T E R 3 ■ T HE OB J E CT P IP E L I N E

it begins by initializing an accumulator variable to zero, iterates adding up file sizes inside, and
ends by displaying the sum to the user:

PS> dir | ForEach-Object -begin { $sum = 0 } –process `
 { $sum += $_.Length } -end { echo "Total: $sum bytes." }

Total: 34 bytes.

The process parameter is the default one. Though the process parameter is not usually
necessary, many people find that, when providing begin and end blocks, including it makes the
command more readable.

Filtering Collections Using Where-Object
Very often, the built-in cmdlets provide more data than we need. Take Get-Process for example: it
will return all processes and allow for rudimentary filtering by process name only. What if we
want to get all processes that occupy more than 20MB of RAM? We have to pipe the output of
Get-Process into Where-Object (I will use the shorthand where in this book. The other alias, ?,
feels too cryptic and might inhibit readability). Can you guess the essential parameters that
where needs? That’s right—it takes a collection and a script block at minimum. The script block
is executed against all objects and only the ones that evaluate to $true will be included in the
resulting collection.

PS> Get-Process | Where-Object { $_.WS -ge 20MB }

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 156 8 99296 58544 191 134.00 2808 dwm
 847 39 59112 58472 277 99.48 2852 explorer
 431 11 65792 53012 157 1004 svchost
 328 17 21780 48908 297 23.19 2600 WINWORD

The WS property is an alias for WorkingSet, which is the amount of physical memory the
process occupies at the moment. The –ge switch is the greater-than-or-equal comparison
operator. Most languages use <, >, <=, >= to compare values. In PowerShell, however, the > and
< symbols are reserved for input and output redirection, so the language designers had to pick
something else. For in-depth coverage of logical operators and comparisons, please refer to
Chapter 2.

Adding or Deleting Properties Using Select-Object
Select-Object has also been named after a related operation from the databases world—the
SELECT clause that defines the columns that are returned in our query result set. While Where-
Object allows us to select a subset of a collection’s items, analogous to selecting rows from a
table, Select-Object does the same for properties, similar to manipulating a table’s columns.
The Select-Object cmdlet allows us to remove properties from the resulting objects or even
add new ones that will be calculated on the fly.

Deshev_940-3C03.fm Page 60 Monday, January 28, 2008 9:56 AM

C HA P TE R 3 ■ T H E O B J E CT P I PE L IN E 61

At the very minimum, Select-Object asks for a list of properties that will be returned. Here
is how to get just the names and last access times for the files in the current folder:

PS> dir | Select-Object Name,LastAccessTime

Name LastAccessTime
---- --------------
test.txt 9/7/2007 8:55:12 AM
test2.txt 9/7/2007 8:55:12 AM
test3.txt 9/7/2007 8:55:12 AM
test4.txt 9/7/2007 8:55:12 AM

Adding properties to objects is done in the same way. We have to follow the convention of
defining a calculated property and pass a dictionary that contains the property’s name and the
expression that calculates the property. Here is how we can add the LastAccessWeekDay property to
our file list:

PS> dir | Select-Object Name,@{Name="LastAccessWeekDay";
 Expression={$_.LastAccessTime.DayOfWeek}}

Name LastAccessWeekDay
---- -----------------
test.txt Friday
test2.txt Friday
test3.txt Friday
test4.txt Friday

Note that Select-Object follows the convention of passing the current object as the $_
variable.

Another thing worth mentioning here is that Select-Object has a rudimentary mechanism
of selecting the first N rows (or the last N for that matter) by passing a number as the first and
last parameters. Here is how to use that to get the first or the last two text files in a folder:

PS> dir *.txt | select -first 2

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\PowerShell

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 7/7/2007 11:33 PM 4 other.txt
-a--- 7/7/2007 11:33 PM 4 test.txt

PS> dir *.txt | select -last 2

Deshev_940-3C03.fm Page 61 Monday, January 28, 2008 9:56 AM

62 CH AP T E R 3 ■ T HE OB J E CT P IP E L I N E

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\PowerShell

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 7/7/2007 11:33 PM 4 test3.txt
-a--- 7/7/2007 11:34 PM 14 test4.txt

Getting the first or last few items is most useful if the objects are sorted. That allows us to
easily get the most interesting objects in a collection, say the five largest files, the three biggest
memory hogs, and so on.

Sorting Collections
Do you want to sort your data according to some property’s value? What about multiple prop-
erties? No problem: Sort-Object is your friend. Just give a list of properties to the cmdlet, and
it uses them to sort your collection. Here is how you can sort your processes according to the
sizes of their working sets:

PS> Get-Process | Sort-Object WS

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 0 0 0 16 0 0 Idle
 28 1 248 524 4 364 smss
 713 0 0 532 4 4 System
 381 11 34492 1132 1520 1904 sqlservr

...

 347 18 22524 49612 312 34.55 2600 WINWORD
 431 11 66084 53300 157 1004 svchost
 848 39 59116 58532 277 101.20 2852 explorer
 159 8 101344 61032 193 141.91 2808 dwm

What if you want the objects sorted in descending order? You simply need to pass in the
descending parameter:

PS> Get-Process | Sort-Object WS -descending

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 159 8 101344 61028 193 143.78 2808 dwm
 847 39 59116 58532 277 101.55 2852 explorer
 436 11 66084 53300 157 1004 svchost
 350 18 22040 49460 313 34.86 2600 WINWORD

...

Deshev_940-3C03.fm Page 62 Monday, January 28, 2008 9:56 AM

C HA P TE R 3 ■ T H E O B J E CT P I PE L IN E 63

 381 11 34492 1132 1520 1904 sqlservr
 713 0 0 532 4 4 System
 28 1 248 524 4 364 smss
 0 0 0 16 0 0 Idle

Very often, you’ll want to strip out duplicate objects from your data. You can use Get-Unique to
do that. Like most operations that strip duplicates, Get-Unique requires that the input collec-
tion be sorted. The algorithm it uses internally is to traverse the collection and remove any item
that is the same as its predecessor—that will not work if the collection is not sorted and equal
items do not appear next to each other. Here is how to get the owners for all files in the current
folder:

PS> dir | Get-Acl | select Owner | sort Owner | `
 Get-Unique -asString

Owner

NT AUTHORITY\SYSTEM
NULL\Hristo

We get the access control list (ACL) for every file, select just the owners, sort by those value,
and then get only the unique entries. We want to get objects with unique string representa-
tions, so we pass the asString parameter.

It is a little known fact that different cultures have different comparison rules. Among the
classic examples of this fact are diacritic characters in strings that are compared according to
special rules in French. That is why Sort-Object allows us to pass a Culture parameter to be
used for sorting. Note the difference in the sort order when using en-US to designate American
English and when using fr-FR to designate French as spoken in France:

PS> "cote", "côte", "coté", "côté" | Sort-Object -Culture "en-US"
cote
coté
côte
côté
PS> "cote", "côte", "coté", "côté" | Sort-Object -Culture "fr-FR"
cote
côte
coté
côté

The Culture name is the .NET culture name, where the first part is an ISO 639 language
name and the second, an ISO 3166 country or region code.

Pipeline Tees
Building long command pipelines is a very powerful way to express a complex action. Some-
times, though, we have to get the objects produced by a command somewhere in the middle of
our pipeline and store them for future reference. The most common scenario is logging: we need
to store a list of objects before acting on them. Say we want to terminate a couple of processes,

Deshev_940-3C03.fm Page 63 Monday, January 28, 2008 9:56 AM

64 CH AP T E R 3 ■ T HE OB J E CT P IP E L I N E

but we need to write out the victim processes’ names to an improvised audit log. Normally, we
would get and terminate the processes using Get-Process and Stop-Process like this:

PS> Get-Process notepad | Stop-Process
PS>

To write the objects that Get-Process returned to a file, we need to inject a Tee-Object call
in the pipeline:

PS> Get-Process notepad | Tee-Object -file kill.log | Stop-Process
PS> type kill.log

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 48 3 1232 7568 59 0.16 3488 notepad

Sometimes, we do not need to write to disk at all, and a variable is just fine for storing inter-
mediate results. We can do that by using the variable parameter:

PS> Get-Process notepad | Tee-Object -variable victims | Stop-Process
PS> $victims | select ProcessName,HasExited

ProcessName HasExited
----------- ---------
notepad True
notepad True

Note that we should not use the dollar sign ($) variable prefix when passing the variable
name to Tee-Object. We pass the variable name, and the cmdlet defines a variable and sets its
content.

Grouping Objects
Dealing with many objects often involves classifying them into several groups. PowerShell makes
that very easy to do with its Group-Object cmdlet. The simplest and most common scenario is
to split a collection into groups according to a property value. Here is how we can get a report
of all services split into groups according to their status:

PS> Get-Service | Group-Object Status

Count Name Group
----- ---- -----
 73 Running {AeLookupSvc, Appinfo, AudioEndpointBuil...
 79 Stopped {ALG, AppMgmt, aspnet_state, Browser...}

The result is a collection of GroupInfo objects. We can get each of them and query it for the
actual objects that belong to the group by accessing the GroupInfo Group property:

Deshev_940-3C03.fm Page 64 Monday, January 28, 2008 9:56 AM

C HA P TE R 3 ■ T H E O B J E CT P I PE L IN E 65

PS> (Get-Service | Group-Object Status)[1].Group

Status Name DisplayName
------ ---- -----------
Stopped ALG Application Layer Gateway Service
Stopped AppMgmt Application Management
Stopped aspnet_state ASP.NET State Service
Stopped Browser Computer Browser
...

The preceding example will show us all services in the “Stopped” group, which contains all
stopped services. Note that use of parentheses to terminate the pipeline result and the use of
that result as a regular variable that contains a collection.

Gathering Collection Statistics
Commonly, when dealing with a big data set, we need to gather statistics that involve querying
every object. This is where the Measure-Object cmdlet comes into play. It will go over a collection
and calculate several of the most common statistics for a property value: count, sum, minimum,
maximum, and average—with a minimal amount of code. As an example, let’s collect statistics
about all file sizes:

PS> dir -r | Measure-Object -property Length -min -max -average -sum

Count : 2565
Average : 55113.0101364522
Sum : 141364871
Maximum : 19622912
Minimum : 0
Property : Length

The preceding query finds all files recursively by using the dir command’s –r switch. It
then loops over the result, queries each file’s Length property, and calculates the statistics.

An interesting thing about Measure-Object is that it can be completely replaced with a properly
crafted ForEach-Object command that sets up a global variable and updates it with all objects’
values. Of course, that would require a lot more typing, so you’re better off using Measure-Object
when you can, as a convenience, and leaving ForEach-Object for more advanced scenarios.

Detecting Changes and Differences
Among Objects
All scripting, sooner or later, will hit the task of comparing two objects or collections, trying to
find what has been added or deleted. Compare-Object is our friend here: it knows how to loop
over two objects, the reference object and another one, and report on their differences. Tradi-
tional diff tools work on text only, while Compare-Object works on real objects. Here is how we
can use it to detect the changes between two folders: the current one and yesterday’s backup:

Deshev_940-3C03.fm Page 65 Monday, January 28, 2008 9:56 AM

66 CH AP T E R 3 ■ T HE OB J E CT P IP E L I N E

PS> diff (dir PowerShellBackup) (dir PowerShell)

InputObject SideIndicator
----------- -------------
kill.log =>

The => side indicator means that the kill.log object is present in the right-hand collection,
the difference object only. An indicator of <= means the same about the left-hand collection,
the reference object.

Compare-Object can help us build some really powerful scripts. For example, we can pipe
its output to ForEach-Object and build a simple backup updating script that will copy newly
created files from PowerShell to PowerShellBackup. Copying all files from one folder to another
is a risky operation, and just to make sure we do not overwrite an important file and lose its
contents, we pass the –confirm switch to the copy command. Here is the code:

PS> diff (dir PowerShellBackup) (dir PowerShell) | `
 where { $_.SideIndicator -eq "=>" } | `
 foreach { copy -confirm "PowerShell\$($_.InputObject)" `
 "PowerShellBackup" }

Confirm
Are you sure you want to perform this action?
Performing operation "Copy File" on Target "Item:
C:\PowerShell\PowerShell\kill.log Destination:
C:\PowerShell\PowerShellBackup\kill.log".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y

Note that we are filtering the diff results first and get only objects that have a SideIndicator of
=>. We then use the $_.InputObject value to build a path that we can copy.

The Object Pipeline and Functional Programming
The object pipeline is the single PowerShell feature that changes the entire paradigm of shell
scripting, because it allows you to work directly with objects, making interacting with various
commands a lot easier than other shells do.

Passing objects around is not the only important thing though. The code name for the
early, unofficial PowerShell releases was Monad. The name comes from a philosophy called
Monadism. The core idea of Monadism is that every material in the world is composed of
simple nondivisible parts; everything complex, valuable, and beautiful is composed of simple
parts. This is the guiding principle of the PowerShell architecture: we get complex behavior by
combining simple commands. Large scripts and commands emerge by chaining commands
and extending each command’s behavior by providing other commands in the form of script
blocks.

The object pipeline, then, is not just about objects in the pipeline. You also should take
special notice of the script block objects that are passed to the cmdlets you have seen so far.
The pipeline grows even more powerful when it has the ability to apply script blocks to objects
that it processes. The style of programming that passes executable code objects to other code

Deshev_940-3C03.fm Page 66 Monday, January 28, 2008 9:56 AM

C HA P TE R 3 ■ T H E O B J E CT P I PE L IN E 67

has much in common with the functional programming paradigm where functions are first
class objects and can be created and passed around at runtime. PowerShell script blocks are
like functions that we create on the fly and pass to commands in order to extend their behavior.
This is where the power of cmdlets such as ForEach-Object and Where-Object comes from. At
their core, those two commands are implemented as a loop that iterates over a collection and
creates another collection. Their value comes from being able to apply the user defined action
to objects in that collection. If we did not have script blocks to abstract the action, we would be
forced to write every collection iteration loop by hand. To get specifics and advanced script
object usage examples, see Chapter 4.

Summary
This chapter has given you the basic tools for working with collections by setting up object
pipelines, so that you can transform data into something that works for you. It is important to
start with those operations so that we can use them later, on objects that come from various
sources. Every PowerShell command is targeted at processing a collection of objects and will
return another collection and any single object will transparently be converted to a collection
when needed.

Most useful PowerShell scripts start out as experiments performed on the command line:
Can I get the list of processes running on that remote machine? Can I filter out the ones I do not
need? Can I sort the result by memory usage? Can I get the top ten memory hogs? Can I kill the
worst offender? Most of these queries can be performed in a single pipeline: probably all of
them could be done in a single pipeline, but sometimes it is best if we split up operations for
readability. You will see details on taking the next step and saving pipelines and other commands
to script files in Chapter 8.

As a last piece of advice, I would recommend learning the aliases for the commands discussed
in this chapter. They will help when trying things out quickly on the command line. We will
learn more aliases and how the command alias system works in general in Chapter 6.

Deshev_940-3C03.fm Page 67 Monday, January 28, 2008 9:56 AM

69

■ ■ ■

C H A P T E R 4

Working with Script Blocks

The PowerShell programming language is very dynamic. Until now, I have focused on its abil-
ities to manipulate objects of any kind. In this chapter, we will explore my favorite language
feature: script blocks. Blocks help craft elegant code not only when manipulating collections of
objects but in many other situations. Most importantly, script blocks allow us to encapsulate
pieces of code and delay their execution. Script blocks are containers holding pieces of code
that do not have to be assigned a formal name. We can create them dynamically in the middle
of any script operation, and, of course, we can execute them multiple times, passing different
parameters.

You have already seen how you can use them to specify an action that a cmdlet will execute
on our behalf when traversing a collection of objects. Now, we will focus on using them to
encapsulate an action that can be executed at a later time. This programming technique offers
great power and expressiveness, and we will use it to make our code simpler, more concise,
and, of course, more readable.

Defining Script Blocks
Defining a script block literal is as simple as surrounding several program statements with
curly braces. The statements will not be executed immediately; instead, a new script block
object will be created and returned. Here is our first script block:

PS> { Write-Host "Hello from a script block" }
Write-Host "Hello from a script block"

As you can see, the actual Write-Host statement did not execute. We got back a script block
object whose string representation is the script code contained inside the block. There is little
value in creating blocks if we do not keep references to them so that we can use them later.
Here is how to assign a newly created block to a variable:

PS> $helloBlock = { Write-Host "Hello from a script block" }
PS>

Let’s look under the hood and see what a script block variable really contains:

PS> $helloBlock.GetType().FullName
System.Management.Automation.ScriptBlock

Deshev_940-3C04.fm Page 69 Thursday, December 20, 2007 3:59 PM

70 CH AP T E R 4 ■ W O R K I N G W I TH SC R I PT B L O CK S

As you can see, script block objects are instances of System.Management.Automation.
ScriptBlock, which is a normal .NET class that is a part of the PowerShell infrastructure. There-
fore, we can treat script blocks as .NET objects, and here is how we can get their properties and
methods:

PS> $helloBlock | Get-Member

 TypeName: System.Management.Automation.ScriptBlock

Name MemberType Definition
---- ---------- ----------
Equals Method System.Boolean Equals(Object obj)
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
get_IsFilter Method System.Boolean get_IsFilter()
Invoke Method System.Collections.ObjectModel.Collection`1[...
InvokeReturnAsIs Method System.Object InvokeReturnAsIs(Params Object...
set_IsFilter Method System.Void set_IsFilter(Boolean value)
ToString Method System.String ToString()
IsFilter Property System.Boolean IsFilter {get;set;}

We got back a pretty interesting list of properties that can give us a clue of how PowerShell
uses blocks: it creates a ScriptBlock object at the time it parses the script code and calls its
Invoke or InvokeReturnAsIs methods at the time of execution.

Now that you know how to create script blocks, we can start using them. We can invoke a
script block by prefixing it with the invoke operator (&). Here is how to do that with a variable
that contains a block:

PS> $helloBlock = { Write-Host "Hello from a script block" }
PS> &$helloBlock
Hello from a script block

The invoke operator works with more than variable definitions; it is an expression oper-
ator, and you can use it on script blocks that are declared inline. For example, the following
statement defines an anonymous script block and executes it immediately:

PS> & { Write-Host "Hello from a script block" }
Hello from a script block

Blocks are compiled objects that can be passed around and executed multiple times. They
are reference objects, and assigning a variable to a block just makes that variable point to the
block reference in memory. To illustrate that, let’s execute a block several times, accessing it
from different variables:

PS> $block1 = { Write-Host "Block executed" }
PS> $block2 = $block1
PS> for ($i = 0; $i -lt 3; $i++)

Deshev_940-3C04.fm Page 70 Thursday, December 20, 2007 3:59 PM

C HA P TE R 4 ■ W O R K IN G WI T H S CR I P T B L OC KS 71

 {
 &$block1
 &$block2
 }

Block executed
Block executed
Block executed
Block executed
Block executed
Block executed

Look at the six Block executed messages! Our loop body executes three times, each time
executing the blocks that $block1 and $block2 point to. Both variables point to the same script
block object, so our block was executed six times.

Passing Parameters and Returning Values
None of the blocks that you have seen so far executed an action that interacted with the outside
world in any sophisticated way. Now that I’ve mentioned expressions, we can look at blocks
from the perspective of an operation that can be used in an expression. Operations take
parameters and return values after they are evaluated. Let’s start with return values.

Returning a value from a script block simply requires that you output an object that will
not be consumed by a cmdlet or another expression. Here is a block that returns a number:

PS> $number = { 5 }
PS> &$number
5
PS> 1 + (&$number)
6

As you can see from the last command in the previous example, the returned number can
be used in expressions under one condition: you have to use parentheses. If you do not, the
plus sign (+) operator mistakenly assumes the ampersand (&) is its right-hand operand and
throws an error:

PS> 1 + &$number
You must provide a value expression on the right-hand side of the '+' opera
tor.
At line:1 char:4
+ 1 + <<<< &$number

Note that outputting an object does not end the execution inside the block, and the rest of
the statements after the output object still get executed. For example, you can print a string to
the console window after returning a value:

Deshev_940-3C04.fm Page 71 Thursday, December 20, 2007 3:59 PM

72 CH AP T E R 4 ■ W O R K I N G W I TH SC R I PT B L O CK S

PS> $numberPrint = { 5; Write-Host "generated a number" }
PS> &$numberPrint
5
generated a number
PS> $result = &$numberPrint
generated a number
PS> $result
5

The $numberPrint block both returns a value and writes a string to the console. Looking at
the anonymous block invocation, you might conclude that the block returns or prints two
variables, but that is not the case. Look at the assignment operation that follows: the $result
variable gets assigned the number 5, the real return value, while the string is printed to the
console.

To end the execution and exit the script block, you can use a return statement. It termi-
nates execution and returns the value. Changing the preceding block to use return will prevent
the Write-Host command from executing:

PS> $number = { return 5; Write-Host "generated a number" }
PS> $a = &$number
PS> $a
5

You can use the return statement to simply exit a block and stop execution. It does not
require you to provide a value. If you omit the value, the script block will simply exit without
returning a value. In that case the block will return a value to its caller only if something has
been output before the return statement. Here are two examples that illustrate that:

PS> $noReturn = { return; 4 }
PS> &$noReturn
PS> $numberReturn = { 4; return }
PS> &$numberReturn
4

The first script block never gets to return the number 4, because execution stops with the
return statement. The second block returns the number 4, because it has been output before
the return statement.

You might be wondering why the second script block even worked. To tell the truth, this is
an area where PowerShell differs from many programming languages: its script blocks can
return multiple values. That is why we referred to returning values as outputting values—you
can do that multiple times, and the result will be an array. As an illustration, let’s take a look at
a block that returns three numbers:

PS> $numbers = { 1; 2; 3; }
PS> &$numbers
1
2
3
PS> (&$numbers).GetType().FullName
System.Object[]

Deshev_940-3C04.fm Page 72 Thursday, December 20, 2007 3:59 PM

C HA P TE R 4 ■ W O R K IN G WI T H S CR I P T B L OC KS 73

Note that we do not explicitly return an array—if we wanted to do that, we would have to
use commas as number separators instead of semicolons. The semicolon is a statement termi-
nator, and as you can see, the result of returning three numbers in a row is an array.

A useful script block would need a way to get parameters from the outside world so that it
can be executed with different data. Parameters can be passed and interpreted according to
their positions. A block will always have a predefined $args variable automatically set up, which
will hold a collection of the supplied parameters. We can use it to create a block that outputs a
customized message to the user given a first and last name:

PS> $greeter = {
 $firstName = $args[0]
 $lastName = $args[1]
 Write-Host "Hello, $firstName $lastName"
 }

PS> &$greeter "John" "Smith"
Hello, John Smith
PS> &$greeter "Al" "Bundy"
Hello, Al Bundy

Accessing parameters by index is a fine technique and is the only one available in many
programming languages. Unfortunately, doing so becomes too error prone once the parameters
grow in number. It is best to use that in either very simple scenarios that cannot possibly go
wrong or in advanced scenarios when you do not know the number of parameters at the time
we define our script blocks. Simple and advanced scenarios aside, in most cases we can use
named parameters by declaring them inside script blocks using the param keyword. Here is
how the previous example looks after switching to named parameters:

PS> $greeter = {
 param ($firstName, $lastName)
 Write-Host "Hello, $firstName $lastName"
 }

PS> &$greeter "John" "Smith"
Hello, John Smith

This feels much better and more elegant. To make invocations almost bulletproof, we can
use a switch-based syntax to associate parameter names with parameter values at the time of
invocation. This way, we do not have to remember the parameter order:

PS> &$greeter "John" "Smith"
Hello, John Smith
PS> &$greeter -firstName "John" -lastName "Smith"
Hello, John Smith
PS> &$greeter -lastName "Smith" -firstName "John"
Hello, John Smith

As you can see, you can provide parameters in any order you wish, even if you can’t remember
the full parameter names. PowerShell will find the parameters for you like so:

Deshev_940-3C04.fm Page 73 Thursday, December 20, 2007 3:59 PM

74 CH AP T E R 4 ■ W O R K I N G W I TH SC R I PT B L O CK S

PS> &$greeter -last "Smith" -first "John"
Hello, John Smith
PS> &$greeter -l "Smith" -f "John"
Hello, John Smith

Note that usually the first letter of a parameter name will suffice. In cases where multiple
parameter names start with the same character sequence, you will have to provide the first
several characters that uniquely identify the parameter.

You can use the param statement to convert the parameters to a type you need, so that if the
caller provides a value that can be converted to the specific type, it will get converted for us.
Another good thing is that we will get an explicit error if the value cannot be converted success-
fully. That feature alone greatly simplifies error handling. Let’s see how to use parameter types
to define a block that sums two numbers:

PS> $sum = {
 param ([int] $a, [int] $b)
 $a + $b
 }

PS> &$sum 3 4
7
PS> &$sum "3" 4
7
PS> &$sum "not a number" 4
param([int] $a, [int] $b) $a + $b
 : Cannot convert value "not a number" to type "System.Int32". Error: "Inpu
t string was not in a correct format."
At line:1 char:2
+ &$ <<<< sum "not a number" 4

The $sum block accepts two integers. Passing a string will trigger a conversion. If it is successful,
everything continues as planned. If unsuccessful, we get a descriptive error that politely hints
we are trying to fit a square peg into a round hole.

What happens when the script block caller does not provide all parameters? By default,
missing parameters get initialized to $null, and we can use that fact to check if a parameter has
actually been provided. Going back to the original greeting example, let us provide an
“Unknown” value for the $lastName parameter if it has not been provided by the script caller:

PS> $greeter = {
 param ([string] $firstName, [string] $lastName)
 if (!$lastName)
 {
 $lastName = "Unknown"
 }
 Write-Host "Hello, $firstName $lastName"
 }

Deshev_940-3C04.fm Page 74 Thursday, December 20, 2007 3:59 PM

C HA P TE R 4 ■ W O R K IN G WI T H S CR I P T B L OC KS 75

PS> &$greeter "John" "Smith"
Hello, John Smith
PS> &$greeter "John"
Hello, John Unknown

Providing default values for parameters like that can quickly bore you to death, as the if
statement shown previously would have to be repeated for every parameter throughout your
code. Fortunately, PowerShell provides a shorthand notation—parameter default values.
Assigning a value in the param block means that the parameter will be initialized with this value
if the caller has not provided a value. Let’s rewrite the $greeter block using a default value for
$lastName:

PS> $greeter = {
 param ([string] $firstName, [string] $lastName = "Unknown")
 Write-Host "Hello, $firstName $lastName"
 }

PS> &$greeter "John" "Smith"
Hello, John Smith
PS> &$greeter "John"
Hello, John Unknown

I like the result; it is much more concise and readable.
Parameter default values can contain any expression. We can exploit this fact to imple-

ment mandatory parameters. Mandatory parameters are parameters that absolutely have to be
provided when calling the script block. To do that, we add an expression that throws an excep-
tion when evaluated. In that way, the exception will be thrown if the caller fails to provide the
parameter. Let’s use this technique in our $greeter block and make our $firstName parameter
mandatory:

PS> $greeter = {
>> param ($firstName = $(throw "firstName required!"), $lastName)
>> Write-Host "Hello, $firstName $lastName"
>> }
>>
PS> &$greeter -lastName "Smith"
firstName required!
At line:2 char:28
+ param ($firstName = $(throw <<<< "firstName required!"), $lastName)

For now, you can just follow the $(throw "Error message") pattern to implement mandatory
parameters. We will discuss exceptions and error handling in detail in Chapter 9.

Processing Pipeline Input
Until now, we have used blocks to encapsulate executable actions and expressions. In the
previous chapter, you saw how you can pass script blocks to cmdlets and invoke them for every
item in the pipeline. To refresh your memory, look at the following example, which passes a
block to the ForEach-Object cmdlet to get the last write dates for all text files:

Deshev_940-3C04.fm Page 75 Thursday, December 20, 2007 3:59 PM

76 CH AP T E R 4 ■ W O R K I N G W I TH SC R I PT B L O CK S

PS> dir *.txt | ForEach-Object { $_.LastWriteTime.Date }

Friday, September 14, 2007 12:00:00 AM
Thursday, September 13, 2007 12:00:00 AM
Saturday, July 07, 2007 12:00:00 AM

Now, let’s dig deeper! Cmdlets are not the only objects that can work with the input pipeline—
we can make script blocks do that too. Each script block can contain three special sections that
help us work with pipeline input: begin, process, and end. Each section looks like a nested block
and contains zero or more statements. The most important section is the process one, as it
is invoked for every object in the pipeline. By convention, the current object is passed via the
$_ special variable. Using a process section, we can easily write a script block that will filter a
collection of numbers and return the ones greater than five, for example:

PS> $greaterThanFive = {
 process {
 if ($_ -gt 5)
 {
 return $_
 }
 }
 }

PS> 3,4,5,6,7 | &$greaterThanFive
6
7

Similar to process, we can embed begin and end sections. These two are executed before
pipeline processing starts and after it finishes, respectively. They are useful in cases where we
want to calculate collection statistics or maintain some state that will help us build the return
result. As an example, let’s see how to create a script block that sums all numbers that have
been piped in:

PS> $sum = {
 begin {
 $total = 0
 }
 process {
 $total += $_
 }
 end {
 return $total
 }
 }

PS> 1,2,3,4 | &$sum
10

Deshev_940-3C04.fm Page 76 Thursday, December 20, 2007 3:59 PM

C HA P TE R 4 ■ W O R K IN G WI T H S CR I P T B L OC KS 77

This time, our process section only adds the current value to the running total, and the act
of returning the value is performed in the end section. The actual addition operation is worth
noting here: we are using the += operator, which takes the right-hand variable value and adds
it to the left-hand variable. We calculate the total by repeatedly adding the current value, passed in
the $_ variable, to the $total variable.

Script blocks can accept both parameters and pipeline input. Named and position parameters
are available in the current scope and in the $args collection, while pipeline objects are passed
in $_. To demonstrate how to set up both parameters and process pipeline input, we can write
a script block that will add a number to all items in the pipeline:

PS> $adder = {
 param ($number)
 process {
 $_ + $number
 }
 }

PS> 1,2,3 | &$adder 10
11
12
13

Numbers are fine to make a point, but let’s try a real-world example. We can create a block
that will calculate the number of days between a specific date and the last write date for all text
files in the current folder:

PS> $dateDiff = {
 param ([datetime] $referenceDate)
 process {
 ($referenceDate - $_.LastWriteTime.Date).Days
 }
 }

PS> dir *.txt | &$dateDiff ([datetime]::Today)
5
6
74

Note that I’ve surrounded [datetime]::Today with parentheses. If we don’t do that, the
DateTime object will be converted to a string and will be parsed back into a DateTime. This is
both inefficient and likely to raise an exception as the string representation of a date is not
guaranteed to be parsed back correctly.

Variable Scope
The scope of a variable is the portion of a program’s code that can use a variable. PowerShell
has quite sophisticated scoping rules for named objects, like variables, that kick in when we
start to send them across script block, function, and script boundaries. I will start the discussion

Deshev_940-3C04.fm Page 77 Thursday, December 20, 2007 3:59 PM

78 CH AP T E R 4 ■ W O R K I N G W I TH SC R I PT B L O CK S

here with an emphasis on script blocks, and I will cover functions and script files in Chapters 5
and 8 respectively.

DEFINING VARIABLE SCOPE

Scope is a computer science term that defines the surface area in which a variable is visible. It can be likened
to the idea of a namespace—the mechanism that allows us having objects with the same name existing in
different environments. Very simple languages do not have the concept of different scopes for different vari-
ables; in a sense, every variable is visible everywhere. This quickly leads to problems, because you have to be
extra careful when defining variables, so that they do not overwrite other variables. Imagine the following situation:

$myVariable = 3
#. . . a lot of code in between . . .
$myVariable = 5

When the second variable is assigned, we would have lost the first variable, and that means we would
introduce a hard-to-catch bug.

Modern programming languages, PowerShell included, solve the problem by allowing every logical code
unit to have a different space for variables. This way, initializing and assigning a variable in one code unit will
not affect other units. Script blocks are such units and so are functions and script files, so assigning variables
from within a script block will not overwrite variables with the same names that have been declared outside
that script block.

$myVariable = 4
& {
 $myVariable = 5
}

In the preceding example, the script block gets a different $myVariable variable, so that it does not
overwrite the one declared outside the block. Inside the script block, $myVariable will refer to the variable
containing the number 5. Outside the block, the $myVariable variable will still contain the number 4.

Scopes are hierarchical in nature. Each script block starts a new local scope and can declare
its own variables. In addition, it inherits the variables declared in the parent scope. The parent
scope is usually the global one, but this is not always the case. Nesting a script block inside
another block, for example, will have the parent scope refer to the outer script block. A block
can freely access variables declared in parent scopes, but most of the time, that access is read
only. That is, a block can see and read a variable declared before it, but extra effort is required
if it has to modify it. The theory is easier to grasp with an example, so here is a script block that
reads a variable from the parent scope and writes it to the console:

PS> $name = "John"
PS> $personAction = { Write-Host "Hello $name" }
PS> &$personAction
Hello John

Deshev_940-3C04.fm Page 78 Thursday, December 20, 2007 3:59 PM

C HA P TE R 4 ■ W O R K IN G WI T H S CR I P T B L OC KS 79

Changing the $name variable and calling the block again will logically result in a different
message:

PS> $name = "Mike"
PS> &$personAction
Hello Mike

What happens if we try to change the variable from within the block? To assign a value to
a variable, PowerShell will first look to see if it is declared in the current scope and, if it is not,
will create a new local variable. Here is what happens if we try to assign the $name variable from
within the $personAction block:

PS> $personAction = {
 $name = "Scott"
 Write-Host "`$name changed to $name"
 }

PS> $name = "John"
PS> &$personAction
$name changed to Scott
PS> $name
John

There are two important things to note in the preceding snippet. First, the block uses the
modified variable and gets “Scott” as the person’s name. Second, the $name variable inside the
block is not the same as the $name variable declared outside. In fact, they are two completely
different variables, and the local variable shadows the global one. That is why the global $name
variable remains untouched and preserves its original value after the block is executed. This
suggests that we cannot change a global variable from within a script block. Actually, we can,
but we have to work harder.

We can change variables in all scopes once we realize that the dollar sign syntax for variables
is just a convenient shorthand for calling the Get-Variable and Set-Variable cmdlets behind
the scenes. Using Get-Variable, we can obtain a reference to a PSVariable object that has the
name and the value for a variable. Here is how we can use that to get our $name variable:

PS> Get-Variable name

Name Value
---- -----
name John

Most of the time, we know the variable name (after all we pass it as a parameter to
Get-Variable), and we are interested in the value only. We can pass the –valueOnly parameter
and get straight to the object that the variable contains:

PS> Get-Variable name -valueOnly
John

Deshev_940-3C04.fm Page 79 Thursday, December 20, 2007 3:59 PM

80 CH AP T E R 4 ■ W O R K I N G W I TH SC R I PT B L O CK S

The Set-Variable cmdlet, on the other hand, finds variables using their names and modi-
fies their values. We can use it as a replacement for the assignment operator and assign “Mike”
to the $name variable:

PS> Set-Variable name "Mike"
PS> $name
Mike

Now, let’s rewrite the $personAction example using Get-Variable and Set-Variable:

PS> Set-Variable "name" "John"
PS> Get-Variable "name" -valueOnly
John
PS> $personAction = {
 Set-Variable name "Scott"
 Write-Host "`$name changed to $name"
 }

PS> &$personAction
$name changed to Scott
PS> Get-Variable "name" -valueOnly
John

The Get-Variable and Set-Variable syntax feels a lot clumsier than the assignment syntax
we are used to, but it is more powerful. Both Get-Variable and Set-Variable support a –scope
parameter that tells them where to look for the variable. A scope of 0 means the current scope.
A value of 1 means the parent scope, 2 the grandparent one, and so on. We can use that to modify a
variable in the parent scope from within a script block. Here is how we can change $personAction
to do that:

PS> $name = "John"
PS> $personAction = {
 Set-Variable name "Scott" -scope 1
 Write-Host "`$name changed to $name"
 }

PS> &$personAction
$name changed to Scott
PS> $name
Scott

As you can see from the last statement, this time, the $name variable in the parent scope
changed to “Scott”.

Most of the time we do not deal with deeply nested scopes and are interested in distin-
guishing variables in the current scope and the global one. We can take advantage of a special
syntax that uses a prefix before variable names to denote their scope. In the $personAction
example, we can declare the $name variable to be global, which would enable writing to it from
within the script block. Here is how to do that:

Deshev_940-3C04.fm Page 80 Thursday, December 20, 2007 3:59 PM

C HA P TE R 4 ■ W O R K IN G WI T H S CR I P T B L OC KS 81

PS> $global:name = "John"
PS> $personAction = {
 $global:name = "Scott"
 Write-Host "`$global:name changed to $global:name"
 }

PS> &$personAction
$global:name changed to Scott
PS> $global:name
Scott

We prefix the variable name with $global: to make it a global variable. Note that we do use
one dollar sign before “global” and do not add another before the actual variable name.

PowerShell supports four scope prefixes:

• global: This scope has the greatest visibility. All code sees global variables.

• script: This is similar to global but is limited to the current script file. A variable like
$script:name will be visible throughout the current script file but not outside it. I will
explain script files in Chapter 8.

• local: This is the default scope. Variables will be visible in the current and nested scope.
The assignment syntax can modify a variable in only the current local scope.

• private: This is the most restricted scope. Variables will be visible in only the current
scope. This is convenient if you want to hide a variable from a child.

The private scope is very interesting. Let’s see how to hide a variable from a script block:

PS> $private:numberValue = 1
PS> $checkNumberValue = {
 if ($numberValue -eq $null)
 {
 Write-Host "Cannot access `$numberValue"
 }
 }

PS> &$checkNumberValue
Cannot access $numberValue
PS> $numberValue
1

The variable remains visible to the parent scope. Of course, even declaring the variable
private will not hide the variable from the almighty Get-Variable and Set-Variable cmdlets:

PS> $checkNumberValue = {
 if ((Get-Variable "numberValue" -valueOnly -scope 1) -ne $null)
 {
 Write-Host "Can access `$numberValue from parent scope"
 }
 }

Deshev_940-3C04.fm Page 81 Thursday, December 20, 2007 3:59 PM

82 CH AP T E R 4 ■ W O R K I N G W I TH SC R I PT B L O CK S

PS> &$checkNumberValue
Can access $number from parent scope

When resolving a reference to a variable without a scope prefix, PowerShell starts looking
in the private and local scopes and then continues in the script and global ones. Note that
this holds true for reading a variable’s value. Assigning a new value without specifying a prefix
will always create a local variable. Here is an example:

PS> $global:name = "John"
PS> $personAction = {
 Write-Host "`$name = $name"
 $name = "Scott"
 Write-Host "`$name changed to $name"
 }

PS> &$personAction
$name = John
$name changed to Scott
PS> $name
John

The inner block reads $name and gets the global variable. It then assigns a value, thus
creating a local variable. At the end, the global variable remains unchanged.

PowerShell supports a special syntax for executing a command in the current scope by
prefixing it with a single dot. This is referred to as dot-sourcing a command. Dot-sourcing a
script block makes its inner variables available to the current scope. To illustrate that, let’s look
at a block that declares an inner variable:

PS> $numberBlock = {
 $numberInBlock = 1
 Write-Host $numberInBlock
 }

PS> &$numberBlock
1
PS> $numberInBlock -eq $null
True

As you can see, the $numberInBlock variable is available inside the block only. Let’s see what
happens when we dot-source the block:

PS> . $numberBlock
1
PS> $numberInBlock
1

The $numberInBlock variable is now available, because $numberBlock has been executed in
the current scope. Note that we do not need an ampersand (&) symbol before the $numberBlock
variable reference to execute it if we use dot-sourcing.

Deshev_940-3C04.fm Page 82 Thursday, December 20, 2007 3:59 PM

C HA P TE R 4 ■ W O R K IN G WI T H S CR I P T B L OC KS 83

Scoping gets even more interesting when pipelines are involved. Blocks in the same pipe-
line share a single scope. Here is a pipeline that contains two blocks passed to cmdlets applied
at a different point in the pipeline. The second block sees variables declared in the first one:

PS> dir *.txt | foreach { $file = $_.Name; return 3 } |
 foreach { "got $file" }

got test.txt
got test2.txt
got test3.txt
got test4.txt

Note that the first foreach block only sets the $file variable and returns a dummy number.
The $file variable is available to the second foreach block that actually returns it. This is very
convenient if you wish to store some information at an early stage in the pipeline and have it
available at later.

Invoking Strings as Expressions
Almost all script languages have a special function or operation that takes a string as an input
parameter, compiles it, and executes it as a piece of code. Other popular languages such as
JavaScript call that function eval. PowerShell’s equivalent is the Invoke-Expression cmdlet.
Strings can be either passed as parameters or piped in from another command. Here is how to
execute a simple string like “Write-Host ‘invoked expression’”:

PS> Invoke-Expression "Write-Host 'invoked expression'"
invoked expression

Note that we have to escape quotes or use single quotes inside the string that gets executed.
This is quite cumbersome, but it is worth the effort. We can manipulate strings at runtime and
create highly dynamic and elegant solutions by building commands on the fly. Let’s look at
how to generate several commands and pipe them to Invoke-Expression for execution:

PS> 1..3 | foreach { "Write-Host 'Got $_'" } | Invoke-Expression
Got 1
Got 2
Got 3

Invoking an expression is quite similar to building and executing script block. In fact, that
is precisely what the Invoke-Expression cmdlet does under the hood: it creates a new script
block, executes it, and pushes any return values down the pipeline for the next command. The
only thing to keep in mind is that, unlike a script block, Invoke-Expression does not create a
child variable scope. It always executes in the current scope. Here is how we can verify that:

PS> $name = "John"
PS> Invoke-Expression "`$name = 'Mike'"
PS> $name
Mike

Deshev_940-3C04.fm Page 83 Thursday, December 20, 2007 3:59 PM

84 CH AP T E R 4 ■ W O R K I N G W I TH SC R I PT B L O CK S

As you can see, the $name variable got modified, so we must be executing in the current
scope. We are using double quotes when constructing the command string, so we have to
escape the dollar sign to make the string passed to Invoke-Expression contain the $name variable
reference instead of the expanded variable value.

The best use for Invoke-Expression is to easily turn a string into an executable command.
It is ideal for quick and dirty solutions that can be crafted in a few minutes. Here is how we can
use the cmdlet to build a simple calculator that allows the user to type an expression:

PS> $expression = Read-Host "Enter expression"
Enter expression: 3*2+1
PS> $result = Invoke-Expression $expression
PS> Write-Host $result
7

Be careful though! Taking user input without verifying its contents and then executing it is
a huge security risk and a recipe for disaster. What if the user entered the expression 3*2; del
C:\ -recurse –force? You would have to kiss your files bye-bye. The rule here is to always vali-
date user input and avoid Invoke-Expression at all cost when user input is involved. Still, the
cmdlet is very handy for your own use when you do not need to strictly check for bad input
strings. Remember to be extra careful!

There is another way to execute a string—by using the global $ExecutionContext variable.
It is of the System.Management.Automation.EngineIntrinsics type, and it contains a property,
InvokeCommand, of the System.Management.Automation.CommandInvocationIntrinsics type. We
can use InvokeCommand’s InvokeScript method to do the same thing as Invoke-Expression does.
Here is how:

PS> $ExecutionContext.InvokeCommand.InvokeScript("Write-Host 'invoked'")
Invoked

The $ExecutionContext.InvokeCommand object is very useful, as it allows us to compile a
string into a script block. We can use that to create dynamic commands that we wrap in script
blocks for later execution. Here is an example:

PS> $cmd = "Write-Host `"`$(`$args[0])`""
PS> $cmdBlock = $ExecutionContext.InvokeCommand.NewScriptBlock($cmd)
PS> &$cmdBlock "test"
Test

Why create script blocks when we can just store the string and use Invoke-Expression
when we need to execute it? For one thing, the script block solution compiles the script code
only once at the time of its creation, while Invoke-Expression compiles the script code every
time it’s executed. In addition, a script block creates a child variable scope for us that is some-
times desirable, as we may want protection against unintentionally modifying a variable in the
current scope. As usual, when dealing with nested scopes, declare your parent scope variables
as script or global, or use Get-Variable and Set-Variable if your script block needs to modify
them.

Deshev_940-3C04.fm Page 84 Thursday, December 20, 2007 3:59 PM

C HA P TE R 4 ■ W O R K IN G WI T H S CR I P T B L OC KS 85

Script Blocks as Delegates
Delegates are an integral part of .NET’s event handling mechanism. In short, delegates are
objects that keep a reference to a .NET class, a method reference, and an object reference if the
method is not static. When a delegate is invoked, it will call the method of the object it refer-
ences. Events in .NET are implemented as delegates pointing to the event receiver object and
method, and passing those delegates to the event sender. The sender invokes the event dele-
gates when it raises the event, and the receiver gets notified.

Script blocks and delegates have a lot in common—both of them point to some code and
can be invoked to execute that code. PowerShell’s type system allows a script block to be converted
to a delegate. There is one caveat though: only delegates of the System.EventHandler type are
supported. That is, we can convert to delegates only blocks that take an object and a System.
EventArgs instance as parameters. Let’s see how we can declare such blocks and turn them to
delegates:

PS> $handler = {
 param ($sender, [EventArgs] $eventArgs)
 Write-Host "Event raised!"
 }

PS> $delegate = [EventHandler] $handler
PS> $delegate.GetType().FullName
System.EventHandler

We can invoke delegates by calling their Invoke() method:

PS> $delegate.Invoke(3, [EventArgs]::Empty)
Event raised!

There is little value in calling our own delegates to simulate an event, so let’s try something
real. We can create a small Windows Forms application that can simulate a graphical input box
that we can use to ask our users for input. To do that, we need to create a Form object, add a
TextBox and a Button control inside and wire the Button Click event and make it execute our
event handler. Our Click event handler will close the form and store the TextBox text value in a
global variable that we will retrieve later. Here is the code:

$null = [Reflection.Assembly]::LoadWithPartialName("System.Windows.Forms")
$form = New-Object Windows.Forms.Form
$form.Size = New-Object Drawing.Size -arg 300, 85

$textBox = New-Object Windows.Forms.TextBox
$textBox.Dock = "Fill"
$form.Controls.Add($textBox)

$button = New-Object Windows.Forms.Button
$button.Text = "Done"
$button.Dock = "Bottom"

Deshev_940-3C04.fm Page 85 Thursday, December 20, 2007 3:59 PM

86 CH AP T E R 4 ■ W O R K I N G W I TH SC R I PT B L O CK S

$button.add_Click(
 { $global:resultText = $textBox.Text; $form.Close() })
$form.Controls.Add($button)

[void] $form.ShowDialog()
Write-Host $global:resultText

See the first line? PowerShell does not load the System.Windows.Forms assembly by default,
so we need to do it ourselves in order to use the .NET types inside. We create a Form object and
size it to 300 pixels wide and 85 pixels tall. We next add a TextBox control that fills the entire
form width; in other words, it stretches horizontally to occupy all available space. After that we
add our Button control. The really important part is the call to the add_Click method. That method
gets a delegate as a parameter and attaches it to the Click event. Note that we do not even need
an explicit cast when calling that method—PowerShell does that for us already. Here is what
our input box looks like:

Figure 4-1. An input box created with Windows Forms

And this is what we get as a result in our console:

PS> Write-Host $global:resultText
Hello, WinForms!

Summary
We have gone through quite a lot in this chapter. Script blocks are an unusual programming
construct at first, but fortunately, they are easy to master. Script blocks are only one of
PowerShell’s mechanisms for abstracting and reusing code, and you will learn the rest of them
later in this book.

The next chapter will introduce functions and filters that are closely related to script
blocks. Our ultimate goal is to master different code reuse techniques, and we will continue to
pursue it in the next chapters by introducing aliases, providers, and script files. Those tech-
niques are important, because they are the stepping stones to building complex scripts.

Deshev_940-3C04.fm Page 86 Thursday, December 20, 2007 3:59 PM

87

■ ■ ■

C H A P T E R 5

Working with Functions

The concept of a function in many programming languages, PowerShell included, has much
in common with the mathematics concept of a function. A function is an operation that accepts
a set of parameters and returns new values. Mathematics requires that a function depend on its
parameters only; that is, it should always return the same value given the same parameters.
However, shell users do not have to comply with that restriction. A function in PowerShell is
just another name for a subroutine or a piece of code that can accept parameters, execute
actions, and return values.

Subroutines are possibly the most important invention in computer science and the field
of programming. Invented back in 1948 by David Wheeler, Maurice Wilkes, and Stanley Gill as
a part of their work on the EDSAC computer, subroutines allow pieces of code to be written
separately from the main program and later called when needed. Even today, close to 60 years
later, this is how most programs are written. Functions are the primary mechanism for building
abstractions and crafting reusable pieces of code in PowerShell. By learning to structure your
code with functions, you can make it less complex and more manageable and readable. In this
chapter, I will explain both how to create functions and how to use them to solve common
problems elegantly.

Defining Functions
A function is very similar to a script block in the sense that it contains executable code. The
main difference between the two is that a script block is anonymous—it has to be assigned to a
variable before it can be evaluated. Functions get their names at the time of their creation, and
that name makes them immediately available for execution. To define a function, we have to
use the function keyword in the following form:

function <name>(<parameter list>)
{
 <function body>
}

The function name should start with a letter and can contain any alphanumeric character
sequence, as well as hyphens and underscore characters. This is how we can define a simple
function that outputs some text:

Deshev_940-3C05.fm Page 87 Thursday, December 20, 2007 3:36 PM

88 CH AP T E R 5 ■ W O R K I N G W I TH F U N CT I ON S

PS> function Say-Hi()
 {
 Write-Host "Hello from a function"
 }

The parameter list parentheses are optional, and we can safely omit them when our func-
tion will not accept parameters:

PS> function Say-Hi
 {
 Write-Host "Hello from a function"
 }

Defining a function automatically creates an object with its name in the current scope.
That makes calling it just a matter of typing its name:

PS> Say-Hi
Hello from a function

Function Internals
Note that we used a Verb-Noun name for our function, which is the established convention for
all commands in PowerShell, for the sake of clarity and readability. Functions behave much
like built-in cmdlets, so we name them in the same way.

Functions get registered in the global commands space, and as you already saw, a function’s
invocation does not differ in any way from a cmdlet’s. We can use the Get-Command cmdlet to
obtain a reference to our function, examine it under our Get-Member microscope, and empiri-
cally discover some interesting facts about functions. Here is how to get our Say-Hi function:

PS> $hiFunction = Get-Command Say-Hi -type Function
PS> $hiFunction.GetType().FullName
System.Management.Automation.FunctionInfo

We got back a System.Management.Automation.FunctionInfo object. Let’s see what useful
properties it holds for us:

PS> $hiFunction | gm -type Property

 TypeName: System.Management.Automation.FunctionInfo

Name MemberType Definition
---- ---------- ----------
CommandType Property System.Management.Automation.CommandTypes Command...
Definition Property System.String Definition {get;}
Name Property System.String Name {get;}
Options Property System.Management.Automation.ScopedItemOptions Op...
ScriptBlock Property System.Management.Automation.ScriptBlock ScriptBl...

Deshev_940-3C05.fm Page 88 Thursday, December 20, 2007 3:36 PM

C H AP TE R 5 ■ W OR K IN G W IT H FU N CT IO N S 89

The CommandType property is already set to Function and Name is set to “Say-Hi”. The most
interesting property is ScriptBlock, which tells us what really happens under the hood—func-
tions are simply named script blocks. We can get the script block and even execute it ourselves,
without referring to the function. Here is how to do it for our function:

PS> $hiFunction.ScriptBlock
Write-Host "Hello from a function"

PS> & $hiFunction.ScriptBlock
Hello from a function

There’s nothing special here—we just use the invoke operator (&). You’ve already seen that
getting a function’s script block allows us to inspect the code we are about to execute before
actually executing it. For convenience, function objects contain the code in the form of a string
in their Definition property. Here is how to use that and inspect a function’s code to see what
it does:

PS> $hiFunction.Definition.GetType().FullName
System.String
PS> $hiFunction.Definition
Write-Host "Hello from a function"

The Definition property holds perfectly valid code that we can manipulate and even
execute using the Invoke-Expression cmdlet. Here is a sample:

PS> Invoke-Expression $hiFunction.Definition
Hello from a function

This technique might seem to offer no advantages over getting the function script block
and executing it instead, but it might be more convenient in some occasions. You can refer to
the previous chapter for the differences between using a script block and a string expression.

Function Parameters
To have a function accept parameters, we can provide a list in the function definition. Here is
a sample function that accepts two numbers and writes their sum to the console:

PS> function Write-Sum($first, $second)
 {
 $sum = $first + $second
 Write-Host "Sum: $sum"
 }

PS> Write-Sum 4 5
Sum: 9

Deshev_940-3C05.fm Page 89 Thursday, December 20, 2007 3:36 PM

90 CH AP T E R 5 ■ W O R K I N G W I TH F U N CT I ON S

■Note PowerShell has a different syntax for calling functions than other languages you may be familiar
with. Most languages require that you provide parameters inside parentheses and separate one parameter
from another with a comma like this: Write-Sum(4, 5). However, that syntax will not work in PowerShell.
To quickly get used to the correct PowerShell syntax, start thinking about calling functions as calling external
programs or cmdlets and passing positional parameters separated with spaces and using a switch-based
syntax for named parameters: Write-Sum –first 4 –second 5.

If you miss using parentheses and commas for providing parameters, you can find that notation in the object
method call syntax: $myObject.DoSomething(4, 5). Yes, although calling object methods and functions
may seem similar, the two have different syntaxes. The only feasible explanation for their differing syntax is
that, although they look similar, both operations are quite different in reality.

We can use exactly the same techniques for working with function parameters as we did
with script block parameters in the previous chapter—if a parameter-passing technique works
for a script block, it will work for a function too. For starters, we can specify a parameter’s type,
so that the interpreter automatically converts values when passing them to the function. This
is how we can force integer parameters for our function:

PS> function Write-Sum([int] $first, [int] $second)
 {
 $sum = $first + $second
 Write-Host "Sum: $sum"
 }

PS> Write-Sum 2 "2"
Sum: 4

We can provide default values for parameters that have not been passed by the function
callers. This is how we can take advantage of default values to write a function that formats a
date and writes it to the console:

PS> function Format-Date($date, $format = "{0:M/d/yyyy}")
 {
 Write-Host ($format -f $date)
 }

PS> Format-Date [datetime]::Today
[datetime]::Today
PS> Format-Date ([datetime]::Today)
9/23/2007

As you can see, the default date format is month/day/year. We can override that, say, if we
wanted to use a full date and time pattern:

PS> Format-Date ([datetime]::Today) "{0:f}"
Sunday, September 23, 2007 12:00 AM

Deshev_940-3C05.fm Page 90 Thursday, December 20, 2007 3:36 PM

C H AP TE R 5 ■ W OR K IN G W IT H FU N CT IO N S 91

We can force function callers to always pass one of the parameters by using a default value
that throws an exception. This is how we can make the input date parameter mandatory:

PS> function Format-Date($date = $(throw "Date required"), `
 $format = "{0:M/d/yyyy}")
 {
 Write-Host ($format -f $date)
 }
PS> Format-Date
Date required
At line:1 char:37
+ function Format-Date($date = $(throw <<<< "Date required"), `

When I said that we can use exactly the same techniques as we did with script blocks, I
meant it. We can even skip declaring parameters in the function definition and declare them
inside the function body. The body is just a script block, and it can contain a param statement.
Here is how our Format-Date function looks with the parameters declared inside the script block:

PS> function Format-Date
 {
 param ($date = $(throw "Date required"), $format = "{0:M/d/yyyy}")
 Write-Host ($format -f $date)
 }

PS> Format-Date (Get-Item C:\autoexec.bat).LastAccessTime
11/2/2006

Passing Parameters by Reference
Parameters passed to a function transfer data in one direction only. We cannot assign a value
to a parameter and expect the original value to change. We can assign new values to parameters,
but that will simply create a local variable with the same name. Here is what happens:

PS> $name = "John"
PS> function AssignToParam($name)
 {
 $name = "Mike"
 Write-Host "inside function: $name"
 }
PS> AssignToParam $name
inside function: Mike
PS> Write-Host "outside function: $name"
outside function: John

The newly created variable will shadow the one that was originally passed and that will
preserve the original value.

How can we change the parameter that was passed to our function? As we saw in the previous
chapter, we can traverse the variable scope upwards using Get-Variable and Set-Variable, and
that will definitely work. Let’s use that technique to create a function that will swap two vari-
ables’ values. Warning—ugly code ahead!

Deshev_940-3C05.fm Page 91 Thursday, December 20, 2007 3:36 PM

92 CH AP T E R 5 ■ W O R K I N G W I TH F U N CT I ON S

PS> function Swap($first, $second)
 {
 $firstValue = Get-Variable $first -scope 1 -valueOnly
 $secondValue = Get-Variable $second -scope 1 -valueOnly
 Set-Variable $first $secondValue -scope 1
 Set-Variable $second $firstValue -scope 1
 }

PS> $a = 4
PS> $b = 5
PS> Swap "a" "b"
PS> $a
5
PS> $b
4

I cannot even start to describe how bad I feel for having to pass the variable names instead
of values. Unfortunately, providing the value only is not sufficient—we need the name in order
to modify the variable. Not only is the preceding code extremely ugly but it might not work in
all cases. What if the variables are declared not in the parent scope but in the grandparent one
instead? We do not really know if we should pass 1 or 2 or an even greater number as the –scope
parameter.

Fortunately, there is a better way than looking for variables in all parent scopes. PowerShell
provides support for variable references through the PSReference object. We can cast any variable
to a PSReference using the [ref] type shorthand, and we will get an object whose Value property we
can modify. Setting a reference’s value property will modify the original variable. This is how
we can rewrite our Swap function to make it use references:

PS> function Swap([ref] $first, [ref] $second)
 {
 $tmp = $first.Value
 $first.Value = $second.Value
 $second.Value = $tmp
 }

PS> $a = 4
PS> $b = 5
PS> Swap ([ref] $a) ([ref] $b)
PS> $a
5
PS> $b
4

Much better! The code is cleaner, and it refers to the variables unambiguously without
having to probe parent scopes. Note the use of parentheses at the line that calls Swap; we have
to explicitly convert the variables to references before passing them to the function.

Deshev_940-3C05.fm Page 92 Thursday, December 20, 2007 3:36 PM

C H AP TE R 5 ■ W OR K IN G W IT H FU N CT IO N S 93

Returning Values
Just as you saw with script blocks, you can return a value from a function by outputting an
object that is not consumed by any operation. Outputting more than one object will result in
the function returning a collection. Here is a function that outputs several objects in a loop:

PS> function Generate-Numbers($max)
 {
 for ($i = 0; $i -lt $max; $i++)
 {
 $i
 }
 }

PS> Generate-Numbers 3
0
1
2

We can return a value and exit the function at the same time using the return statement.
Here is how to use that to create a function that searches for an object in a collection:

PS> function Find-Object($needle, $haystack)
 {
 foreach ($item in $haystack)
 {
 if ($item -eq $needle)
 {
 return $item
 }
 }
 }

PS> Find-Object 5 (3..8)
5
PS> Find-Object 5 (2..4)
PS>

I want to make an important distinction here between outputting objects and writing
objects to the console. Outputting objects is the act of passing objects down the output stream.
We can do that on purpose, by using the variable name as we did in the Generate-Numbers
example, or we can simply let a command we call return values without collecting them in a
variable. Here is how we can do this with a simple dir call:

PS> function Get-TextFiles()
 {
 dir *.txt
 }

Deshev_940-3C05.fm Page 93 Thursday, December 20, 2007 3:36 PM

94 CH AP T E R 5 ■ W O R K I N G W I TH F U N CT I ON S

PS> Get-TextFiles

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\PowerShell

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 9/14/2007 12:31 AM 12 digits.txt
-a--- 9/13/2007 6:33 AM 11266 largetext.txt
-a--- 7/7/2007 11:33 PM 4 other.txt

PowerShell will pass all output objects to the next command down the pipeline.
Writing objects is the explicit conversion of objects to text and sending that text to the console.

No values will be passed down the pipeline. This is what the Write-Host cmdlet, which we have
used in previous examples, does. Outputting and writing objects look almost the same because
of the fact that every pipeline implicitly ends with a call to the Out-Default cmdlet. That cmdlet
processes all input and writes it to the console.

Scoping Rules
Functions, just like script blocks, create a new local scope. Again, the scope inheritance variable
visibility rule applies: a function can read all variables declared in its scope and all of its parent
scopes. Refer to Chapter 4 for an in-depth discussion of variable scoping.

Being named objects, functions obey scoping rules in a way similar to variables. We can
declare a function in any scope, and it will be visible to code in that scope and its child scopes.
That means we can nest functions. Here is what nesting looks like:

PS> function Outer()
 {
 function Inner()
 {
 Write-Host "Inner function"
 }
 Inner
 }

PS> Outer
Inner function

The Inner function is visible to code inside the Outer one only. We will get an error if we try
to call it from the outside scope:

PS> Inner
The term 'Inner' is not recognized as a cmdlet, function, operable program,
 or script file. Verify the term and try again.
At line:1 char:5
+ Inner <<<<

Deshev_940-3C05.fm Page 94 Thursday, December 20, 2007 3:36 PM

C H AP TE R 5 ■ W OR K IN G W IT H FU N CT IO N S 95

Similar to variable assignment, defining a function in a child scope will always shadow
functions with the same name in any of the parent scopes. Here is how we can override what a
function does for the current scope:

PS> function Outer()
 {
 function Do-Something()
 {
 Write-Host "Original Do-Something"
 }
 function Inner()
 {
 function Do-Something()
 {
 Write-Host "Overriden Do-Something"
 }
 Do-Something
 }
 Inner
 Do-Something
 }

PS> Outer
Overriden Do-Something
Original Do-Something

The Outer function defines the Do-Something and Inner nested functions. The Inner function,
in turn, defines another Do-Something function. That inner definition overrides the Do-Something
function inherited from the parent scope, so calling the Inner function prints “Overridden
Do-Something.” That override is valid only for code executing in the Inner function’s scope.
Once we exit that scope, Do-Something refers to its original value.

Unlike Get-Variable, the Get-Command cmdlet does not support a scope parameter, and
there is no way to get to a function from the parent scope once we override it in the current
scope.

In most cases, we can prefix a function name with the global, script, local, or private
scope modifier to help us get to the correct function at the time of execution. Here is how we
can declare both a global and a local function having the same names and use the namespace
prefixes to distinguish between the two:

PS> function global:Do-Something()
 {
 Write-Host "Global Do-Something"
 }
 function InnerScope()
 {
 function local:Do-Something()
 {
 Write-Host "Local Do-Something"
 }

Deshev_940-3C05.fm Page 95 Thursday, December 20, 2007 3:36 PM

96 CH AP T E R 5 ■ W O R K I N G W I TH F U N CT I ON S

 local:Do-Something
 global:Do-Something
 }

PS> InnerScope
Local Do-Something
Global Do-Something

You can refer to the previous chapter for in-depth discussion of the scope modifier
prefixes.

■Note The scope namespace prefixes work in the same way for functions as they do for variables. The
syntax is slightly different though: if we are referring to a global variable, we must use a $global:myVariable
syntax. Dollar signs are used to distinguish variables from other programming language constructs, and they
make parsing the language easier for the PowerShell developers. Therefore, namespace prefixes for functions
do not use dollar signs, and we have to use a global:myFunction syntax to refer to global functions.

When we override local functions at different scope levels, we can use a clever hack to call
a function from a parent scope, but doing so will require that we obtain a reference to the function
before overriding it in the current scope. Here is how to do that:

PS> function Outer()
 {
 function Do-Something()
 {
 Write-Host "Original Do-Something"
 }
 function Inner()
 {
 $original = Get-Command Do-Something -type Function
 function Do-Something()
 {
 Write-Host "Overriden Do-Something"
 Write-Host "Calling original function..."
 &$original
 }
 Do-Something
 }
 Inner
 }

PS> Outer
Overriden Do-Something
Calling original function...
Original Do-Something

Deshev_940-3C05.fm Page 96 Thursday, December 20, 2007 3:36 PM

C H AP TE R 5 ■ W OR K IN G W IT H FU N CT IO N S 97

This is still a clumsy solution, because in the real world, we may have to check if a function
with the same name already exists before declaring one ourselves, so that we can get the orig-
inal value. Hopefully, a situation like this one will occur very rarely and can easily be avoided.

Filters
As you already know, most PowerShell scripting is about pipelines. The way to accept pipeline
input in a function is to define begin, process, and end sections inside the function. Those sections
are executed when the function has something piped to it. Of the three sections, process is the
only mandatory one—it is executed for each object that has been piped in. As usual, inside the
process section, we can refer to the current object using the $_ special variable. The begin and
end sections are executed before and after the pipeline has been processed. Since an example
is worth a thousand words, here is a function that accepts a pipeline of files and calculates their
total size:

PS> function Get-Size
 {
 begin
 {
 $total = 0
 }
 process
 {
 Write-Host "processing: $($_.Name)"
 $total += $_.Length
 }
 end
 {
 return $total
 }
 }

PS> dir *.txt | Get-Size
processing: test.txt
processing: test2.txt
processing: test3.txt
processing: test4.txt
34

Most often, when dealing with pipeline input, we will need to define only a process section.
For example, we can filter a collection of processes and display only the ones started less than
five minutes ago. To do that, we define a Get-RecentlyStarted function that returns the current
pipeline object from its process section if its StartTime property is less than five minutes ago:

Deshev_940-3C05.fm Page 97 Thursday, December 20, 2007 3:36 PM

98 CH AP T E R 5 ■ W O R K I N G W I TH F U N CT I ON S

PS> function Get-RecentlyStarted
 {
 process
 {
 $start = $_.StartTime
 if ($start -ne $null)
 {
 $now = [datetime]::Now
 $diff = $now - $start
 if ($diff.TotalMinutes -lt 5)
 {
 return $_
 }
 }
 }
 }

PS> Get-Process | Get-RecentlyStarted

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 187 11 22336 37808 121 5.38 3316 firefox
 48 3 1236 7624 59 0.13 912 notepad

PowerShell does not allow a function to contain both arbitrary statements that get executed
when the function is called and the pipeline-related begin, process, and end sections. There is a
deep semantic difference between collecting all input and passing it to the function for immediate
processing and calling a function once the first item becomes available then calling it for the
second item and so on. That is why the two modes of function operation are deemed incompatible.

The PowerShell language designers are fully aware of the profound difference between
regular and pipeline-processing functions. The pipeline function mode is often used to filter a
collection, and that has led to implementing a shorthand notation that helps in defining filter
functions. We can do that using the filter keyword. Let’s now rewrite the previous example as
a filter:

PS> filter Get-RecentlyStarted
 {
 $start = $_.StartTime
 if ($start -ne $null)
 {
 $now = [datetime]::Now
 $diff = $now - $start
 if ($diff.TotalMinutes -lt 5)
 {
 return $_
 }
 }
 }

Deshev_940-3C05.fm Page 98 Thursday, December 20, 2007 3:36 PM

C H AP TE R 5 ■ W OR K IN G W IT H FU N CT IO N S 99

PS> Get-Process | Get-RecentlyStarted

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 188 11 22376 37780 121 4.63 3244 firefox
 48 3 1236 7616 59 0.14 2468 notepad

As you can see, using filters instead of functions unclutters our code by eliminating a nesting
level and makes it much more readable.

We can get a closer look at filters again using Get-Command. According to PowerShell, filters
are functions, because asking for commands of the Function and Filter type will both return
our filter:

PS> Get-Command Get-RecentlyStarted -type Function

CommandType Name Definition
----------- ---- ----------
Function Get-RecentlyStarted process {...

PS> Get-Command Get-RecentlyStarted -type Filter

CommandType Name Definition
----------- ---- ----------
Function Get-RecentlyStarted process {...

And here is the hidden process section that each filter has:

PS> (Get-Command Get-RecentlyStarted -type Filter).ScriptBlock
process {
$start = $_.StartTime
 if ($start -ne $null)
 {
 $now = [datetime]::Now
 $diff = $now - $start
 if ($diff.TotalMinutes -lt 5)
 {
 return $_
 }
 }

}

The preceding example should prove that filters are just syntactic sugar sprinkled on top
of functions.

Deshev_940-3C05.fm Page 99 Thursday, December 20, 2007 3:36 PM

100 CH AP T E R 5 ■ W O R K I N G W I TH F U N CT I ON S

FUNCTIONS’ AND FILTERS’ INTERNAL REPRESENTATION

Functions that work with the pipeline and filters are so similar that you may think that internally they are repre-
sented by the same objects. This is not quite the case: although a function with a single process block is
semantically equivalent to a filter, it is still represented by an internal FunctionInfo object, while a filter is
represented by a FilterInfo one.

As an example, take the following function that filters out all odd numbers from the pipeline, effectively
returning even numbers only:

PS> function Even-Function
{
 process
 {
 if ($_ % 2 -eq 0)
 {
 $_
 }
 }
}

Now, let’s take a look at an implementation of the same logic that uses a filter:

PS> filter Even-Filter
{
 if ($_ % 2 -eq 0)
 {
 $_
 }
}

Although both Event-Function and Event-Filter as defined previously are returned when we ask
for commands of the Function type, we get a different object for each of them:

PS> Get-Command Even-Function -CommandType Function

CommandType Name Definition
----------- ---- ----------
Function Even-Function process {...

PS> Get-Command Even-Filter -CommandType Function

CommandType Name Definition
----------- ---- ----------
Filter Even-Filter process {...

Deshev_940-3C05.fm Page 100 Thursday, December 20, 2007 3:36 PM

C H AP TE R 5 ■ W OR K IN G W IT H FU N CT IO N S 101

Another way to distinguish between a function and a filter at runtime is to check the IsFilter property of the
inner ScriptBlock object. Here is how:

PS> $function = (Get-Command Even-Function -CommandType Function)
PS> $function.ScriptBlock.IsFilter
False
PS> $function = (Get-Command Even-Filter -CommandType Function)
PS> $function.ScriptBlock.IsFilter
True

To reiterate, those two function objects work in absolutely the same way. Being able to distinguish
between the two might come in handy only in cases when we are working on reflective scripts printing
diagnostic information about the environment or when debugging a really wicked problem.

Functions and Script Blocks
Combining functions and script blocks results in some very powerful programming techniques. By
combining functions’ ability to create new commands with the dynamic nature of script blocks,
we can get very close to the built-in PowerShell language syntax. Calling a function that accepts
a single script block closely resembles using the if, while, or switch statements. That makes
our code look as if it builds and uses new language constructs that makes it easier to read and
understand. In addition to the cool syntax, script blocks make a perfect tool for encapsulating
actions or strategies that can be executed by a function as it traverses various objects.

Implementing New Control Structures
I do not remember anymore how many times I have written complex loops that require a
nontrivial exit condition. Those are often coded as an endless loop and contain a break state-
ment that exits the loop. The norm for writing such loops is to use a while or a for loop like this:

PS> while ($true)
 {
 Write-Host "Looping..."
 #something triggers the exit condition
 break
 }

Looping...
PS> for (;;)
 {
 Write-Host "Looping..."
 #something triggers the exit condition
 break
 }

Looping...

Deshev_940-3C05.fm Page 101 Thursday, December 20, 2007 3:36 PM

102 CH AP T E R 5 ■ W O R K I N G W I TH F U N CT I ON S

To save some keystrokes, we can introduce a new statement, loop, that repeatedly executes
a block. It will use a hidden while loop to execute the block many times:

PS> function loop($code)
 {
 while ($true)
 {
 &$code
 }
 }

PS> loop {
 write-host "Looping..."
 break;
 }
Looping...

See how it looks almost like a regular control-flow statement? The only difference is that
we have to place the opening brace on the same line or use a line continuation escape using the
backtick (`) symbol, so the shell evaluates the block and passes it to the loop function. The fact
that our script block is executed in a while loop allows us to use loop-related control flow state-
ments like break and continue. As you can see in the preceding example, they still work.

Another convenient extension we can define is an operation that will silently ignore all
errors. The following code defines a function ignore that executes a script block once, catches
any exceptions thrown by the block, and silently continues:

PS> function ignore($code)
 {
 trap
 {
 continue
 }
 &$code
 }

PS> $numbers = 2..0
PS> foreach ($number in $numbers)
 {
 ignore {
 5 / $number
 }
 }

2.5
5

Our function just sets up an exception trap that will do nothing when an error occurs and
then execute the script block that has been provided. We use the ignore function to perform
several division operations and ignore all errors: we see two result values because the third

Deshev_940-3C05.fm Page 102 Thursday, December 20, 2007 3:36 PM

C H AP TE R 5 ■ W OR K IN G W IT H FU N CT IO N S 103

iteration divided by zero, which raised an exception that we ignored. We will discuss exception
handling and debugging in detail in Chapter 9.

Another useful extension that we can build can help us get diagnostic messages about a
command. Often, to ensure that a piece of code has executed, we have to add Write-Host state-
ments both before and after it: If the statement before the code executes, our code is being
executed. If the statement after it is executed, we are sure that our code does not raise any
errors. We can automate scattering Write-Host statements in our code by implementing a
trace function that takes two parameters: the current action description and the action itself.
It writes to the console a log message containing the action description we provided both
before and after executing the action. Here is the code:

PS> function trace($description, $code)
 {
 Write-Host "Before: $description"
 &$code
 Write-Host "After: $description"
 }

PS> trace "dir" {
 dir *.txt
 }

Before: dir

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\PowerShell

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 9/14/2007 12:31 AM 12 digits.txt
-a--- 9/13/2007 6:33 AM 11266 largetext.txt
After: dir

PS> trace "division" {
 $denominator = 0
 3 / $denominator
 }

Before: division
Attempted to divide by zero.
At line:3 char:8
+ 3 / <<<< $denominator
After: division

Having trace in our toolbox makes it easy to surround any statement with a script block
whose execution will get logged to the console.

Deshev_940-3C05.fm Page 103 Thursday, December 20, 2007 3:36 PM

104 CH AP T E R 5 ■ W O R K I N G W I TH F U N CT I ON S

Combining our extensions is extremely powerful. Here is how we can trace a division by
zero while ignoring all errors by nesting an ignore block inside a trace one:

PS> trace "division" {
 ignore {
 $denominator = 0
 3 / $denominator
 }
 }

Before: division
After: division

We can use techniques similar to trace to write to files, measure and profile function
execution times, and so on.

Script Blocks as Strategies
PowerShell does an excellent job of traversing collections and operating with pipelines. It excels
at manipulating flat collections. Quite often, we have to deal with data that is organized in a
complex way. Linear traversal of collections often is inadequate for the problem at hand. Suppose
we have to walk the file system or an XML document tree. Those two objects have a hierarchical
structure that is best traversed recursively. Since PowerShell does not provide primitives for
walking over trees, we will have to write them ourselves. Suppose that we have to go through a
large XML document and extract information from various nodes, which we want to quickly
find according to some condition. Suppose we have this HTML-like data stored in a file called
data.xml residing the current folder:

<body>
some text and an unordered list

 doc1
 doc2
 EMPTY

</body>

We can rapidly load it in an XML document with the following command:

PS> $doc = [xml](Get-Content data.xml)
PS> $doc

body

Body

Now, we want to obtain the first element that contains an <a> tag. We create a recur-
sive function that starts with the <body> element and traverses its children, then the children
of their children, and so on until it finds the elements we are looking for. Here is the code that
does that:

Deshev_940-3C05.fm Page 104 Thursday, December 20, 2007 3:36 PM

C H AP TE R 5 ■ W OR K IN G W IT H FU N CT IO N S 105

PS> function Find-LiAnchor($root)
 {
 $name = $root.PSBase.Name
 if ($name -eq "li" -and $root.a -ne $null)
 {
 return $root
 }
 else
 {
 foreach ($child in $root.PSBase.ChildNodes)
 {
 $result = Find-LiAnchor -root $child -strategy $strategy
 if ($result)
 {
 return $result
 }
 }
 }
 }

PS> Find-LiAnchor($doc.body)

a
-
a

The function returns the first XML element that it finds. We exit the recursion by checking
if a child has already been identified as matching our search criteria. Note that we have to use
the PSBase property to get to the raw, unadapted XmlElement object and its Name property. The
XML type adapter prevents us from getting the tag name by getting the Name property directly.

Everything looks fine with our approach until we face our next task: finding the first
element without a nested <a> inside. We would not want to copy and paste the recursive func-
tion and change the condition. Pulling the condition into a script block is the best option, as that
will allow us to write a generic Find-Node function. That script block is our search strategy. It will be
applied to all XML elements, and it should return $true for the one we are after, and $false other-
wise. Here is our modified code with the search strategy encapsulated in a script block:

PS> function Find-Node($root, $strategy)
 {
 $foundNode = &$strategy -node $root
 if ($foundNode)
 {
 return $root
 }
 else
 {

Deshev_940-3C05.fm Page 105 Thursday, December 20, 2007 3:36 PM

106 CH AP T E R 5 ■ W O R K I N G W I TH F U N CT I ON S

 foreach ($child in $root.PSBase.ChildNodes)
 {
 $result = Find-Node -root $child -strategy $strategy
 if ($result)
 {
 return $result
 }
 }
 }
 }

PS> $emptyLI = Find-Node -root $doc.body -strategy {
 param($node)
 return ($node.PSBase.Name -eq "li") -and ($node.a -eq $null)
 }

PS> Write-Host $emptyLI
li

With that Find-Node implementation in place, our element searches become almost trivial:
all we have to do is define our search condition with a one- or two-line block. Let’s see how we
can find the first <a> element that has a nonnull href attribute:

PS> $anchor = Find-Node -root $doc.body -strategy {
 param($node)
 return ($node.PSBase.Name -eq "a") -and `
 ($node.PSBase.GetAttribute("href") -ne $null)
 }

PS> Write-Host $anchor.href
doc1.xml

Again, we are using PSBase to get to the raw Name property and the GetAttribute() method.
We need GetAttribute() as a way to check if an element contains a specific attribute. We could
have used a $node.href –ne $null condition, but that would return true in cases where we have
a child <href> element as the XML type adapter converts both attributes and nested elements
to properties.

Summary
In this chapter, we continued our journey through the abstraction-building mechanisms that
PowerShell offers. Functions are the most common way to extend the built-in shell function-
ality, and mastering them early on is vital. The next sections deal with complex scenarios, and
the only way to cope with those is to break a problem up into smaller manageable chunks and
solve them one by one. This is the “divide and conquer” approach to problem solving. We will
solve each subproblem by writing a function, and in the end, we will glue several functions
together to get to the ultimate solution.

Deshev_940-3C05.fm Page 106 Thursday, December 20, 2007 3:36 PM

107

■ ■ ■

C H A P T E R 6

Command Aliases

Command aliases are a powerful addition to any shell scripter’s toolbox. For decades, UNIX
shell users have been able to alias a command to something shorter and friendlier. Unfortunately,
the DOS-based shells, command.com and cmd.exe, lacked that feature. In practice, external tools like
doskey.exe allow users to define an alias for a command, but they are not built into the shell,
and users have to learn their quirky syntax. PowerShell finally fills that gap in Windows shells
and provides built-in support for command aliases.

Aliases can be extremely helpful in relieving the strain on your wrists by saving enormous
amounts of typing. PowerShell provides shorter alias names for its verbose cmdlet names out
of the box and encourages users to define their own aliases, so that they can be as productive
as possible.

Aliases have a dark side too—we can get into all sorts of trouble if we do not use them wisely,
so I will show you how to detect and avoid several alias-related problems. Aliases are a wonderful
migration tool; we can use them to provide commands that users coming from another envi-
ronment are accustomed to seeing. PowerShell does exactly that by providing aliases to some
of the built-in commands that will make cmd.exe and UNIX shell users feel at home. I will
briefly outline those aliases and focus on things that are different in PowerShell with regard to
cmd.exe and UNIX shells.

Working with Aliases
PowerShell offers a host of useful commands—quite a few of them come with the default
installation; Version 1.0 comes with more than a hundred. Here is how to get the exact number
of cmdlets registered on your system:

PS> (get-command -type Cmdlet).Length
129

129 is quite a large number! The PowerShell designers have imposed a lot of rules and
guidelines on cmdlet authors, so that names and parameters are consistent across the system
and users learn easily. Even with cmdlet naming conventions and all the similarities across
commands, learning more than a hundred of them can be a daunting task. What do you do if
you cannot trick your mind into remembering some of the names? That is right; you cheat and
set up an alias for that command so that you get a name that is easier to recall.

Deshev_940-3C06.fm Page 107 Monday, December 24, 2007 8:21 AM

108 CH AP T E R 6 ■ CO M M AN D A L IA SE S

Creating Aliases
An alias is a way to associate a name with an existing command. If you are like me, you will
soon get tired of writing the Write-Host cmdlet name and will pick something shorter. I use
that cmdlet when I want to log something to the console for diagnostics purposes. How do we
avoid typing that full name all the time? Simple—define a log alias that refers to Write-Host. We
do that by calling the New-Alias cmdlet:

PS> New-Alias log Write-Host
PS>

We can now use that alias in our code:

PS> log "Operation completed successfully."
Operation completed successfully.

What happens if somebody has already defined that alias for us or even if we did so and
forgot about it? New-Alias will raise an error if the alias already exists:

PS> New-Alias log Get-ChildItem
New-Alias : Alias not allowed because an alias with the name 'log' alr
eady exists.
At line:1 char:10
+ New-Alias <<<< log Get-ChildItem

We can check the list of aliases to verify if the alias name we want to use is available. We
have three ways to do that: the Get-Alias and Get-Command cmdlets and the Alias provider.

Get-Alias

This cmdlet returns either all aliases on the system or just the ones we need according to the
filter specified. Here is how to get all aliases that start with the “l” character:

PS> Get-Alias l*

CommandType Name Definition
----------- ---- ----------
Alias lp Out-Printer
Alias ls Get-ChildItem
Alias log Write-Host

Of course, we can use the full name and call that in an if statement:

PS> if (Get-Alias log)
 {
 log "Alias exists"
 }

Alias exists

We are a bit bold here when calling that alias, because we assume that if the alias exists, it
is our own alias, or even if it is not, it does something similar to logging to the console. We do

Deshev_940-3C06.fm Page 108 Monday, December 24, 2007 8:21 AM

CH AP T E R 6 ■ CO M M AN D A L IA SE S 109

that with all hope that people defining aliases that delete files and naming them log will spend
a painful eternity writing Perl scripts.

Get-Command

Aliases are commands in their own right, and the Get-Command cmdlet can retrieve them. We
just need to set the CommandType parameter to Alias or provide a filter that will narrow our
results to something manageable. Here is how to get our l* aliases:

PS> Get-Command -CommandType Alias l*

CommandType Name Definition
----------- ---- ----------
Alias log Write-Host
Alias lp Out-Printer
Alias ls Get-ChildItem

Note that we got the same output as we did in the Get-Alias example. Both cmdlets have
a similar implementation in that respect, and both return AliasInfo objects that describe our
aliases.

The Alias Provider

By default, the Alias provider maps the alias: drive, which we can query similar to a file
system. Here is how to navigate there and get the l* aliases:

PS> cd alias:
PS> dir l*

CommandType Name Definition
----------- ---- ----------
Alias lp Out-Printer
Alias ls Get-ChildItem
Alias log Write-Host

Again, we get a collection of AliasInfo objects, because the Alias provider returns items of
that type. Having the provider on our side, we can turn the check for an alias’s existence into a
simple item existence check by using the Test-Path cmdlet that we would normally use to verify if
a file or a folder exists. Here is how to rewrite the preceding if statement using Test-Path:

PS> if (Test-Path alias:\log)
 {
 log "Alias exists"
 }

Alias exists

For an in-depth discussion of providers and provider items, see the next chapter.

Deshev_940-3C06.fm Page 109 Monday, December 24, 2007 8:21 AM

110 CH AP T E R 6 ■ CO M M AN D A L IA SE S

Modifying Aliases
Adding aliases and verifying if an alias exists is only a part of the big picture. Quite often, we
want to modify an alias or explicitly overwrite an existing alias with our own value. As you
already saw, New-Alias will raise an error if the alias already exists. We can tell it that we want
to force the creation of an alias by passing the Force switch parameter. That will suppress the
error, silently delete the old alias, and create a new one in its place. This is how we can update
our log alias and make it use Write-Verbose instead of Write-Host:

PS> Get-Alias log

CommandType Name Definition
----------- ---- ----------
Alias log Write-Host

PS> New-Alias log Write-Verbose -Force
PS> Get-Alias log

CommandType Name Definition
----------- ---- ----------
Alias log Write-Verbose

PS> $VerbosePreference = "Continue"
PS> log "This is a test"
VERBOSE: This is a test

Note that we need to set the $VerbosePreference global variable to Continue so that we see
our message at the console and execution is not stopped. You can learn more about script
debugging techniques, such as logging, tracing, and stepping through script code, in Chapter 9.

Instead of forcing us to force new aliases, PowerShell provides an alternative way of modi-
fying an alias’s definition: the Set-Alias cmdlet. It works just like New-Alias –Force and is more
concise. Here is how to change the log alias back to Write-Host:

PS> Set-Alias log Write-Host
PS> Get-Alias log

CommandType Name Definition
----------- ---- ----------
Alias log Write-Host

PS> log "Write-Host is back"
Write-Host is back

There is another way to do this operation: via the Alias provider. Because an alias is an
item, just like a file, we can set that item to something new using the Set-Item cmdlet. Here it
is in action:

Deshev_940-3C06.fm Page 110 Monday, December 24, 2007 8:21 AM

CH AP T E R 6 ■ CO M M AN D A L IA SE S 111

PS> cd alias:
PS> Set-Item log Write-Verbose
PS> dir log

CommandType Name Definition
----------- ---- ----------
Alias log Write-Verbose

An alias’s definition is its content, and we can modify an alias by calling Set-Content. Now, let’s
assume we can’t figure out what log should really do and decide to switch back to Write-Host:

PS> cd alias:
PS> Set-Content log Write-Host
PS> dir log

CommandType Name Definition
----------- ---- ----------
Alias log Write-Host

It might look strange, but PowerShell does not provide a cmdlet that will delete or unset an
alias for us. We are on our own here. To get rid of an unneeded alias, we have to use the Alias
provider and call the Remove-Item cmdlet (conveniently aliased to del). Let’s now get rid of the
log alias:

PS> cd alias:
PS> del log
PS> Get-Alias log
Get-Alias : Cannot find alias because alias 'log' does not exist.
At line:1 char:10
+ Get-Alias <<<< log

Our trusty alias now rests in peace, and PowerShell complains if we look for it using
Get-Alias.

Exporting and Importing Aliases
Imagine the following situation: You have been customizing your shell with tons of useful aliases.
You are a productivity demigod, and you do all your scripting tasks in record time. A coworker
of yours is having some trouble with his shell and asks for help. You go to his machine, fire up
PowerShell, and start typing. You get stuck all the time and your productivity plummets, because
your muscle memory keeps making your fingers type those alias names that you are used to
and those command shortcuts are not available on your coworker’s machine. Does that mean
you should avoid customizing your environment, so that you do not feel lost when you use
another machine? Of course not! That would chain us to lower productivity levels forever. The
solution is to export your aliases and import them on the machine you are working on at the
moment. This way, you get increased productivity and customizability along with high porta-
bility for your skills.

Deshev_940-3C06.fm Page 111 Monday, December 24, 2007 8:21 AM

112 CH AP T E R 6 ■ CO M M AN D A L IA SE S

To export your aliases, you have to invoke the Export-Alias cmdlet. At the very minimum,
you can just provide a file name where the new aliases will get stored. The file is a plain text file
and looks like this:

PS> Export-Alias aliases.txt
PS> type aliases.txt
Alias File
Exported by : Hristo
Date/Time : Wednesday, October 10, 2007 11:07:02 PM
Machine : NULL
"ac","Add-Content","","ReadOnly, AllScope"
"asnp","Add-PSSnapin","","ReadOnly, AllScope"
"clc","Clear-Content","","ReadOnly, AllScope"
"cli","Clear-Item","","ReadOnly, AllScope"
"clp","Clear-ItemProperty","","ReadOnly, AllScope"
"clv","Clear-Variable","","ReadOnly, AllScope"
"cpi","Copy-Item","","ReadOnly, AllScope"
"cpp","Copy-ItemProperty","","ReadOnly, AllScope"
"cvpa","Convert-Path","","ReadOnly, AllScope"
"diff","Compare-Object","","ReadOnly, AllScope"
...

You can get that file to the target machine and then use Import-Alias to get your aliases
installed in the current shell session:

PS> Import-Alias aliases.txt
Import-Alias : Alias not allowed because an alias with the name 'ac' a
lready exists.
At line:1 char:13
+ Import-Alias <<<< aliases.txt
Import-Alias : Alias not allowed because an alias with the name 'asnp'
 already exists.
At line:1 char:13
+ Import-Alias <<<< aliases.txt
Import-Alias : Alias not allowed because an alias with the name 'clc'
already exists.
At line:1 char:13
+ Import-Alias <<<< aliases.txt
...

Do not get scared by all the error messages. They are caused by the default Export-Alias
behavior—by default, the cmdlet will export all aliases on the system, even the built-in ones, so
Import-Alias will generate nonfatal errors when it tries to import them. That is not a problem,
as the built-in alias definitions are the same on every machine anyway, and we do not care if we
redefine those or not.

Deshev_940-3C06.fm Page 112 Monday, December 24, 2007 8:21 AM

CH AP T E R 6 ■ CO M M AN D A L IA SE S 113

FORCING BUILT-IN ALIASES REDEFINITION FOR THE PARANOID

Some may even argue that we are better off redefining the default aliases for a new shell session if we are
working on another machine, as somebody might have changed them. Reverting to the default behavior is a
good idea, as it will save us hair pulling frustration in trying to figure out some awkward problem. There are
security implications too—you would not want to execute malicious code that has been aliased with a name
that makes it look like a built-in command.

You can restore defaults by forcing the alias import process to overwrite existing aliases. To do that, pass
the Force parameter to Import-Alias:

PS> Import-Alias aliases.txt –Force
PS>

Do not worry that you might destroy somebody’s legitimate alias—the newly imported aliases will live
only as long as the shell session does; they are not persisted for future shell sessions. See the “Persisting
Aliases for All Shell Sessions” sidebar for details on enabling aliases for all shell sessions.

Anyway, we can either ignore the import errors by providing the correct ErrorAction
parameter, or edit the text file and remove the built-in aliases. Here is how to ignore the errors:

PS> Import-Alias aliases.txt -ErrorAction SilentlyContinue
PS>

Editing the text file can get a bit tough, because we may have to find and delete a lot of
content. It is always best if we know what our aliases look like and export only those by providing
a filter. For example, here is how we can export all aliases that start with log:

PS> Set-Alias log-host Write-Host
PS> Set-Alias log-verbose Write-Verbose
PS> Export-Alias log-aliases.txt log*
PS> type log-aliases.txt
Alias File
Exported by : Hristo
Date/Time : Wednesday, October 10, 2007 11:20:27 PM
Machine : NULL
"log-host","Write-Host","","None"
"log-verbose","Write-Verbose","","None"

We can even do multiple exports to the same file by appending the contents. Here is how
to add the trace* aliases to our file:

PS> Set-Alias trace-host Write-Host
PS> Export-Alias log-aliases.txt trace* -append
PS> type log-aliases.txt

Deshev_940-3C06.fm Page 113 Monday, December 24, 2007 8:21 AM

114 CH AP T E R 6 ■ CO M M AN D A L IA SE S

Alias File
Exported by : Hristo
Date/Time : Wednesday, October 10, 2007 11:20:27 PM
Machine : NULL
"log-host","Write-Host","","None"
"log-verbose","Write-Verbose","","None"
Alias File
Exported by : Hristo
Date/Time : Wednesday, October 10, 2007 11:22:46 PM
Machine : NULL
"trace-host","Write-Host","","None"

Note that the file headers get inserted twice, but that is not a problem, as the import process
ignores them.

Suppose that you want to get not a text file but a script file that you can execute and use to
add aliases. Doing that is as simple as passing the –as parameter:

PS> Export-Alias log-alias.ps1 log* -as Script
PS> type log-alias.ps1
Alias File
Exported by : Hristo
Date/Time : Wednesday, October 10, 2007 11:27:46 PM
Machine : NULL
set-alias -Name:"log-host" -Value:"Write-Host" -Description:"" -Option
:"None"
set-alias -Name:"log-verbose" -Value:"Write-Verbose" -Description:"" -
Option:"None"

Note how the script contains the actual calls to Set-Alias that will define the alias on the
target machine. You can also export aliases to comma-separated files. That might come in
handy when creating documentation, as you can process comma-separated data quite easily
using Microsoft Excel and other table-oriented tools. Here is how to get a CSV file with your
alias definitions:

PS> Export-Alias log-alias.csv log* -as Csv
PS> type log-alias.csv
Alias File
Exported by : Hristo
Date/Time : Wednesday, October 10, 2007 11:29:18 PM
Machine : NULL
"log-host","Write-Host","","None"
"log-verbose","Write-Verbose","","None"

Deshev_940-3C06.fm Page 114 Monday, December 24, 2007 8:21 AM

CH AP T E R 6 ■ CO M M AN D A L IA SE S 115

PERSISTING ALIASES FOR ALL SHELL SESSIONS

Any alias that you define is valid throughout only the current shell session’s lifetime. Aliases are just like variables
and functions; they are transient objects living in the current process’s memory. You have two options for
saving aliases so that they become permanently available in all shell sessions:

• Add the Set-Alias calls that define your aliases to your shell’s profile. You can learn more about configuring
your shell through the profile script in Chapter 11. This is the easiest option, as you only need to copy a
bunch of code lines from your console window and paste them in the profile script. The downside is that
that script gets messy and hard to maintain if you have many aliases defined.

• Export the aliases you need from your shell session after you finish defining them. Edit the file, and
remove the unneeded aliases. Place that file in a central location on your computer, and add an Import-
Alias command to your profile script that will import the aliases there. Probably the best place to store
the alias file is next to your profile script. That place will be the first anyone (you included) will look for
when trying to modify the shell configuration.

Aliasing Tips, Techniques, and Pitfalls
When it comes to shell scripting, aliases are not, strictly speaking, assets—they can be liabilities
too. They shine at saving typing, but they can really hurt readability, because they force the
reader to remember what each alias points to. Compare the following snippet:

Get-ChildItem *.txt | Where-Object { $_.Size -gt 5KB} | `
 ForEach-Object { $_.Name }

to this one:

gci *.txt | ? { $_.Size -gt 5KB} | % { $_.Name }

Which one is easier to understand? The first one reads almost like English, while the second
may as well be Klingon—even seasoned PowerShell users will have to stop and remember that
? is an alias for Where-Object and % for ForEach-Object. A good rule of thumb that I like to follow
is to use shorter aliases when I am typing on the console. When creating a reusable script, I
always try to provide the longer readable names. This makes it easier on the poor person who
will read and modify the script next. If you need an additional reason to adhere to that rule,
keep in mind that most likely that that poor person will be you.

Name Clashes
The most important part of an alias is its name, so we have to be extra careful when we name
an alias, because it can and will shadow all other commands. For example, let’s create an alias
and name it Get-Command:

Deshev_940-3C06.fm Page 115 Monday, December 24, 2007 8:21 AM

116 CH AP T E R 6 ■ CO M M AN D A L IA SE S

PS> Set-Alias Get-Command dir
PS> Get-Command

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 9/5/2007 10:37 PM Code Snippets
d---- 8/18/2007 4:32 PM Downloads
...

Suddenly, we realize that there is no way for us to call the built-in Get-Command cmdlet. Our
alias shadows that, and typing Get-Command invokes the aliased dir command instead of the
cmdlet. This is by design. When you type a command at the command line, these are the places
that PowerShell looks for commands, in order of priority:

1. Aliases: The shell will first try to find an alias. If it does, it executes the alias and ends
the search.

2. Functions: Next, the shell will try the function definitions.

3. Cmdlets: After that, it will go over the registered cmdlets.

4. Executables: The shell then checks the executable files in the current directory and
directories in the system PATH.

5. Scripts: Then, the shell tries PowerShell script files that have a .ps1 extension.

6. Normal files: As a last resort, the shell tries to launch a file with its registered application.

Things get really hectic if an alias has shadowed one of the commands used everywhere.
For example, aliasing Get-ChildItems to something stupid like Write-Host will completely
break the shell:

PS> Set-Alias Get-ChildItem Write-Host
PS> dir c:\
c:\

As you can see, the dir alias that points to Get-ChildItem is affected too; it too calls Write-
Host. Internal operations like the built-in tab completion will also start breaking; obviously,
that feature uses Get-ChildItem under the hood. In short, do not try this at home.

Unfortunately, those types of name clashes can happen unintentionally. It is easy to set an
alias, forget about it, set a conflicting one, and then run a command that breaks. The only way
to detect that this has happened is to use Get-Alias to see if the command has been aliased to
something that we do not expect:

Deshev_940-3C06.fm Page 116 Monday, December 24, 2007 8:21 AM

CH AP T E R 6 ■ CO M M AN D A L IA SE S 117

PS> Get-Alias Get-ChildItem

CommandType Name Definition
----------- ---- ----------
Alias Get-ChildItem Write-Host

Somebody could unleash his evil genius and alias Get-Alias and Get-Command. Luckily, as
you saw previously, we can get alias information through the alias: drive. This is our last stop:

PS> Set-Alias Get-Alias Write-Host
PS> Set-Alias Get-ChildItem Write-Host
PS> dir alias:\Get-Alias
alias:\Get-Alias
PS> Remove-Item alias:\Get-ChildItem
PS> Remove-Item alias:\Get-Alias

Note how the dir command just echoes its input, because it was aliased to Write-Host.
As you can see, we can remove the offending aliases using Remove-Item and restore our shell’s
normal operation. I hope neither you nor I have to deal with situations where the alias: drive
has been unmapped and New-PSDrive has been aliased to something useless. That would require
restarting the shell so that the built-in aliases and commands get restored to a sane state.

Complex Aliases
Aliases provide a mapping from one command name to another. Sometimes, we might want to
alias a complex command and even massage parameters before execution. Unfortunately,
PowerShell does not support that. If we want to define a dir-recurse alias that lists all files
recursively we cannot do this:

PS> Set-Alias dir-recurse "dir -recurse"
PS> dir-recurse
Cannot resolve alias 'dir-recurse' because it refers to term 'dir -rec
urse', which is not recognized as a cmdlet, function, operable program
, or script file. Verify the term and try again.
At line:1 char:11
+ dir-recurse <<<<

Notice that Set-Alias did not raise an error, and we got the error when we tried to call the
alias? Fortunately, we can still save some keystrokes, but we need to clear the broken alias first.
We can then define a function that calls the dir command, and passes the –recurse parameter
for us:

PS> del Alias:\dir-recurse
PS> function dir-recurse
 {
 dir -recurse
 }

Deshev_940-3C06.fm Page 117 Monday, December 24, 2007 8:21 AM

118 CH AP T E R 6 ■ CO M M AN D A L IA SE S

PS> dir-recurse

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 9/5/2007 10:37 PM Code Snippets
d---- 8/18/2007 4:32 PM Downloads
d---- 6/29/2007 4:10 PM inetpub
...

We can even afford to use names that shadow built-in cmdlet names, because functions
are searched for matches when looking for an executable command before searching cmdlets.
To make things even more fun, we can alias functions. Here is how to refer to our dir-recurse
function by the dirr name:

PS> Set-Alias dirr dir-recurse
PS> dirr

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 9/5/2007 10:37 PM Code Snippets
d---- 8/18/2007 4:32 PM Downloads
d---- 6/29/2007 4:10 PM inetpub

Removing Broken Aliases
Aliases come and go, but their definitions remain. The function or script command that an
alias refers to may disappear. And Set-Alias and New-Alias do not offer any form of validation
for their command definition when they create an alias. Here is how we can define a completely
wrong alias:

PS> Set-Alias wrong-alias something-completely-broken
PS> wrong-alias
Cannot resolve alias 'wrong-alias' because it refers to term 'somethin
g-completely-broken', which is not recognized as a cmdlet, function, o
perable program, or script file. Verify the term and try again.
At line:1 char:11
+ wrong-alias <<<<

We can define the alias, but we get an error only when we try to invoke it. With time, we can
accumulate a big list of broken aliases. We can find those by checking their Definition properties
and trying to resolve their values as a command. If we get an error, we have a broken alias. Here
is how to test that for one command:

Deshev_940-3C06.fm Page 118 Monday, December 24, 2007 8:21 AM

CH AP T E R 6 ■ CO M M AN D A L IA SE S 119

PS> Get-Command (Get-Alias wrong-alias).Definition
Get-Command : The term 'something-completely-broken' is not recognized
 as a cmdlet, function, operable program, or script file. Verify the t
erm and try again.
At line:1 char:12
+ Get-Command <<<< (Get-Alias wrong-alias).Definition

We get an error because “something-completely-broken” is, well, completely broken.
Let’s now do that for all aliases. We will get only those that return a command for their defini-
tion setting:

PS> Get-Alias | Where { !(Get-Command $_.Definition `
 -ErrorAction SilentlyContinue) }

CommandType Name Definition
----------- ---- ----------
Alias wrong-alias something-completely-br...

We can bring this a step further and just delete the matching aliases by extending the pipe
with a ForEach-Object call that deletes the alias:

PS> Get-Alias | Where { !(Get-Command $_.Definition `
 -ErrorAction SilentlyContinue) } | ForEach-Object `
 { Remove-Item "alias:\$($_.Name)" }

PS> Get-Alias wrong*
PS>

We need some string operations to get to the correct alias path in the alias: drive. Now
that we are done with that, we have no more stale aliases on our system.

Built-in Aliases
As I already mentioned, PowerShell comes with a host of aliases right out of the box. Doing a
quick check gets us a staggering number:

PS> (Get-Alias).Length
101

101 built-in aliases! Now that is what I call a lot. We can split those into three logical groups:

• CMD.EXE compatibility aliases: A group of aliases aimed at providing similar, if not the
same, commands experienced CMD.EXE users know

• UNIX shell compatibility aliases: Aliases trying to emulate commands present in UNIX
shells like bash

• Convenience aliases: Shortcuts for most commonly used commands that can make your
life easier

Deshev_940-3C06.fm Page 119 Monday, December 24, 2007 8:21 AM

120 CH AP T E R 6 ■ CO M M AN D A L IA SE S

cmd.exe Look-alikes
You have seen already the liberal use of dir, cd, copy, and so on in our examples so far. Those
were not the real cmdlet names, just convenient aliases to Get-ChildItem, Set-Location, and
Copy-Item, respectively. Table 6-1 provides a full list of the cmd.exe compatibility aliases.

Some of those commands behave differently than their cmd.exe counterparts and are
worth mentioning. The dir command, for example, does not support the familiar /s switch
that recursively gets all files. You will have to use the –Recurse, -rec, or just –r switch. In addition, it
has no support for sorting files in any way—you have to pipe the results through Sort-Object
to do that. We are not forced to make the distinction between deleting a file or a folder: see that
erase, delete, rd, and rmdir are all aliased to the same command, Remove-Item. After all folders,
just like files, are items coming out of the FileSystem provider. Note how Set-Variable has
been aliased to set. This is different than the cmd.exe set myvar=something syntax, as you will
have to use set myvar something in PowerShell. Be extra careful, because the first syntax does
not issue an error or a warning. It just does nothing, as shown in this example:

Table 6-1. Built-in PowerShell Aliases that Emulate Commands from cmd.exe

Name Definition

cls Clear-Host

copy Copy-Item

dir Get-ChildItem

type Get-Content

move Move-Item

popd Pop-Location

pushd Push-Location

erase Remove-Item

rd Remove-Item

rmdir Remove-Item

del Remove-Item

ren Rename-Item

chdir Set-Location

cd Set-Location

set Set-Variable

echo Write-Output

Deshev_940-3C06.fm Page 120 Monday, December 24, 2007 8:21 AM

CH AP T E R 6 ■ CO M M AN D A L IA SE S 121

PS> set myvar=something
PS> $myvar
PS> set myvar something
PS> $myvar
something

Veterans in batch file scripting may have the %myvar% syntax burned into their brains; this
is how cmd.exe refers to a variable and gets its contents. Take a look at this example, run from
within cmd.exe:

C:\>SET NAME=John

C:\>echo "Hello, %NAME%"
"Hello John"

Forget about that syntax! Variables have to be prefixed with a dollar sign in PowerShell.
Here is the preceding example in PowerShell:

PS> set NAME John
PS> echo "Hello, $NAME"
Hello John

Still, this code looks clumsy and not quite in the spirit of PowerShell. It is best written as
follows:

PS> $name = "John"
PS> echo "Hello, $name"
Hello, John

Other than the different variable declaration, assignment, and reference syntax PowerShell is
remarkably similar to cmd.exe. Seasoned command prompt users will find themselves right at
home after their first commands.

UNIX Look-alikes
Long time bash users coming from a UNIX background will not be disappointed with Power-
Shell. The UNIX-like aliases are listed in Table 6-2.

Table 6-2. Built-in PowerShell Aliases Emulating UNIX Commands

Name Definition

clear Clear-Host

diff Compare-Object

cp Copy-Item

ls Get-ChildItem

cat Get-Content

history Get-History

Deshev_940-3C06.fm Page 121 Monday, December 24, 2007 8:21 AM

122 CH AP T E R 6 ■ CO M M AN D A L IA SE S

As you can see, the navigation commands are all there. Seasoned UNIX shell users will find
that the habit of typing ls instead of dir will not break their commands. The diff command
behaves a bit different than the UNIX text-line-oriented diff utilities in that it compares objects
and their properties. It can be used on files too and provides similar features; the only caveat is
that the output is not the standardized, unified diff format but PowerShell’s difference objects
converted to text. You can learn more about the diff command and other pipeline- and object-
oriented command in Chapter 3.

I really like the way the mount command aliases the New-PSDrive cmdlet. Unfortunately,
that is all it has in common with UNIX file system mounting. The syntax of adding a new drive
and accessing it is completely different. To make matters even stranger, there is no built-in
symmetric umount alias that will map to Remove-PSDrive. PowerShell drives are very different
than drives that the operating system uses. To learn about how the shell uses drive providers to
work with drives, please see to Chapter 7.

■Note The PowerShell commands use quite a different foundation for their implementation than UNIX shell
commands. For starters, all commands that traditionally use text use objects. File-oriented commands now
work on items that can be something other than a file, say, a registry entry. Even though we have aliases with
the same names defined for us, those aliases should be interpreted as learning tools: they are the trail that the
PowerShell team have left for us that says, “Here, if you have used that command from a different shell, you
should look into this PowerShell substitute.” The aliases are not a binding contract that guarantees compati-
bility; they just point us in the right direction.

pwd Get-Location

ps Get-Process

mv Move-Item

mount New-PSDrive

lp Out-Printer

popd Pop-Location

pushd Push-Location

rm Remove-Item

chdir Set-Location

cd Set-Location

sort Sort-Object

sleep Start-Sleep

kill Stop-Process

tee Tee-Object

echo Write-Output

Table 6-2. Built-in PowerShell Aliases Emulating UNIX Commands (Continued)

Name Definition

Deshev_940-3C06.fm Page 122 Monday, December 24, 2007 8:21 AM

CH AP T E R 6 ■ CO M M AN D A L IA SE S 123

Convenience Aliases
Apart from trying to emulate existing shells, PowerShell offers a host of new features. It also
includes a good many aliases that help in using those new features. As a word of warning—
these aliases may seem too cryptic for a new user and may feel as if they can obfuscate a
command beyond recognition. However, many people find them useful, and many examples
on the Net use them, so getting to know them may be worth the effort. The convenience aliases
for built-in PowerShell commands are listed in Table 6-3.

Table 6-3. Built-in PowerShell Convenience Aliases

Name Definition

ac Add-Content

clc Clear-Content

cli Clear-Item

clp Clear-ItemProperty

clv Clear-Variable

cpp Copy-ItemProperty

% ForEach-Object

fc Format-Custom

fl Format-List

ft Format-Table

fw Format-Wide

gci Get-ChildItem

gcm Get-Command

gc Get-Content

gi Get-Item

gp Get-ItemProperty

gl Get-Location

gm Get-Member

gps Get-Process

gdr Get-PSDrive

gsnp Get-PSSnapin

gsv Get-Service

gu Get-Unique

gv Get-Variable

gwmi Get-WmiObject

Deshev_940-3C06.fm Page 123 Monday, December 24, 2007 8:21 AM

124 CH AP T E R 6 ■ CO M M AN D A L IA SE S

The most important of the aliases in Table 6-3 are the % alias, which maps to ForEach-Object,
and ?, which points to Where-Object. You might be thinking that using those aliases has the
potential of truly bringing Perl’s obfuscation capabilities to PowerShell. The fact is that those
two are very easy to type on the console, and once your fingers learn them, you will not look
back. Just remember not to use them in scripts and to shorten ForEach-Object and Where-Object to
foreach and where in lengthier code snippets.

group Group-Object

iex Invoke-Expression

ii Invoke-Item

mp Move-ItemProperty

ni New-Item

ndr New-PSDrive

nv New-Variable

oh Out-Host

rp Remove-ItemProperty

rdr Remove-PSDrive

rsnp Remove-PSSnapin

rv Remove-Variable

rnp Rename-ItemProperty

rvpa Resolve-Path

select Select-Object

sc Set-Content

si Set-Item

sp Set-ItemProperty

sv Set-Variable

sort Sort-Object

sasv Start-Service

spps Stop-Process

spsv Stop-Service

? Where-Object

where Where-Object

Table 6-3. Built-in PowerShell Convenience Aliases (Continued)

Name Definition

Deshev_940-3C06.fm Page 124 Monday, December 24, 2007 8:21 AM

CH AP T E R 6 ■ CO M M AN D A L IA SE S 125

You can see that select, where, and sort alias Select-Object, Where-Object, and Sort-Object
respectively, but there is no foreach alias that points to ForEach-Object. Yet that alias seems
to be present. In reality, foreach coincides with the foreach loop statement in the PowerShell
script language. This case is handled by the PowerShell’s parser, which intelligently decides
whether to interpret foreach as a loop statement or cmdlet invocation according to the context.

Summary
In this chapter, you learned how to define and use aliases to help you in your daily shell use.
Command aliases are a powerful tool and a productivity booster. They require little investment
and yield huge returns once you start using them. Use them with care, though, so that you do
not get into a situation where you pull the rug from beneath yourself by modifying the core
commands that are used by both the shell and all utilities. I showed you several of the dangerous
scenarios and demonstrated techniques of getting out of those situations, just in case you do
get into trouble.

After that, I introduced the built-in shell aliases and how to use them to leverage your existing
shell scripting skills acquired using the DOS or UNIX shells. Those aliases are an important
migration tool for users who have previous experience with text-based shells. They are what
get us thinking, “Aha! This is what I should be using when I want to do that.”

Deshev_940-3C06.fm Page 125 Monday, December 24, 2007 8:21 AM

127

■ ■ ■

C H A P T E R 7

Providers

Did you know that PowerShell has no concept of files or folders? That’s why all the opera-
tions that involve files and folders seem to be referring to items: Get-Item, Get-ChildItem,
Get-ItemProperties. When I first saw that dir was actually an alias for Get-ChildItem, I screamed. I
felt as if the cmdlet naming convention has been conceived by a really sick mind. But, later as
I was learning more about the shell, I found out that the reasoning behind the item concept is
that PowerShell works with all types of objects that look like files. Instead of taking the UNIX
shells’ approach and calling everything a file, even things that are obviously not files, the language
designers have come up with the item concept.

An item is an object that has content and properties and can contain other items. This
definition easily accommodates files and folders: they are items with respective content and
properties. This item concept is very powerful, because it can be applied to many objects on
our system. Items are manipulated by providers—those are the actual objects that know how
to create items, retrieve them, modify them, remove them, and so on. Providers are one of the
official shell extensibility mechanisms. The shell comes with several providers built-in and a
snap-in can install additional providers.

Enumerating Providers
Let’s now take a virtual walk around Providerville. We can get a list of all providers by calling
the Get-PSProvider cmdlet:

PS> Get-PSProvider

Name Capabilities Drives
---- ------------ ------
Alias ShouldProcess {Alias}
Environment ShouldProcess {Env}
FileSystem Filter, ShouldProcess {C, D, E, F}
Function ShouldProcess {Function}
Registry ShouldProcess {HKLM, HKCU}
Variable ShouldProcess {Variable}
Certificate ShouldProcess {cert}

As you can see, each of the providers has been used to mount a drive that looks like a
regular file system drive. Of those drives, only the ones exposed by the FileSystem provider
point to real files. Providers are automatically registered by the snap-ins that contain them, so

Deshev_940-3C07.fm Page 127 Friday, December 21, 2007 2:30 PM

128 CH AP T E R 7 ■ P R O V ID E R S

let’s get the name of the snap-in and the .NET type that implements each of the providers. We
will format the results in a list, because the ImplementingType property value can get long:

PS> Get-PSProvider | select Name,PSSnapIn,ImplementingType | fl

Name : Alias
PSSnapIn : Microsoft.PowerShell.Core
ImplementingType : Microsoft.PowerShell.Commands.AliasProvider

Name : Environment
PSSnapIn : Microsoft.PowerShell.Core
ImplementingType : Microsoft.PowerShell.Commands.EnvironmentProvider

Name : FileSystem
PSSnapIn : Microsoft.PowerShell.Core
ImplementingType : Microsoft.PowerShell.Commands.FileSystemProvider

Name : Function
PSSnapIn : Microsoft.PowerShell.Core
ImplementingType : Microsoft.PowerShell.Commands.FunctionProvider

Name : Registry
PSSnapIn : Microsoft.PowerShell.Core
ImplementingType : Microsoft.PowerShell.Commands.RegistryProvider

Name : Variable
PSSnapIn : Microsoft.PowerShell.Core
ImplementingType : Microsoft.PowerShell.Commands.VariableProvider

Name : Certificate
PSSnapIn : Microsoft.PowerShell.Security
ImplementingType : Microsoft.PowerShell.Commands.CertificateProvider

With the exception of the Certificate provider, each one of them is stored in the Microsoft.
PowerShell.Core snap-in.

In a perfect world, we would have been able to work with registry keys in absolutely the
same way as with files and vice versa. Unfortunately, the underlying storage type has its limita-
tions, and that means that not all providers are created equal. Therefore, PowerShell designers
have come up with the concept of provider capabilities, which allow a provider to declare to
the outside world the operations it supports. You already saw the capabilities of the built-in
providers in the previous example. Here are the possible capabilities a provider can support:

• Credentials: This is the ability to use credentials provided by the user on the command
line to access an item.

• ExpandWildCards: If implemented, the provider should be able to expand paths that
contain wildcard symbols. PowerShell already implements that functionality, and it will
fall back to its implementation if the provider does not support the capability. Supporting
the capability typically means better performance for a provider.

Deshev_940-3C07.fm Page 128 Friday, December 21, 2007 2:30 PM

CH AP T E R 7 ■ P R O V ID E R S 129

• Include: This is the ability to include items based on a wildcard string. Again, PowerShell
knows how to handle wildcard strings when this capability is not available, possibly at
the cost of performance.

• Exclude: Similar to Include, this is the ability to exclude items based on a wildcard. Providers
implementing this capability will typically perform faster than those taking advantage of
PowerShell’s default implementation.

• Filter: This provides the ability to additionally filter items according to a provider-specific
string.

• None: This explicitly specifies no additional capabilities. PowerShell will fall back on its
implementation and capabilities inherited from the provider base classes.

• ShouldProcess: The provider calls the ShouldProcess method before performing modifi-
cations to the data store. This allows the user to use –WhatIf and –Confirm parameters
and preview or manually confirm every data modification.

Drives
Providers would be useless if there were no way to get items from them. The standard mecha-
nism to provide items is through a drive. Similar to Windows drives, PowerShell drives use an
identifier followed by a colon like C: or D:. Unlike Windows drives, PowerShell drives can have
longer identifiers like Env:, cert:, and HKCU:. We can get information about the drives currently
registered on the system with the Get-PSDrive cmdlet:

PS> Get-PSDrive

Name Provider Root CurrentLo
 cation
---- -------- ---- ---------
Alias Alias
C FileSystem C:\
cert Certificate \
D FileSystem D:\
E FileSystem E:\
Env Environment
F FileSystem F:\
Function Function
HKCU Registry HKEY_CURRENT_USER Software
HKLM Registry HKEY_LOCAL_MACHINE ...indows
Variable Variable

Note that every drive has a root location and keeps track of its current location if it has
been modified. Drives are not set in stone; we can create new drives and make it easier to
access files using shorter paths. Here is how to add a docs: drive that points to the Documents folder:

Deshev_940-3C07.fm Page 129 Friday, December 21, 2007 2:30 PM

130 CH AP T E R 7 ■ P R O V ID E R S

PS> New-PSDrive -name docs -PSProvider FileSystem `
 -Root C:\Users\Hristo\Documents

Name Provider Root CurrentLo
 cation
---- -------- ---- ---------
docs FileSystem C:\Users\Hristo\Documents

We can now navigate there and use the newly created drive:

PS> cd docs:
PS> dir

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Users\Hristo\D
 ocuments

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 10/1/2007 10:55 PM My Virtual Machines
d---- 9/4/2007 10:46 PM My Weblog Posts
d---- 7/25/2007 10:39 AM Virtual Machines
d---- 10/2/2007 1:14 AM Visual Studio 2005
d---- 7/26/2007 7:04 PM WindowsPowerShell

Note that drives are not completely transparent. Even though we are in the docs: drive, the
directory path still points to the original location: C:\Users\Hristo\Documents. The FileSystem
provider can work with network shares too. You map network shares as local drives, just as you
would do it for a normal folder. Just provide the full network path to the share as the drive root.
Here is how to map the \\srv1\public share as the local net: drive:

PS> New-PSdrive -Name net -PSprovider FileSystem -root \\srv1\public

Name Provider Root CurrentLo
 cation
---- -------- ---- ---------
net FileSystem \\srv1\public

PS> cd net:
PS> dir

 Directory: Microsoft.PowerShell.Core\FileSystem::\\srv1\public

Deshev_940-3C07.fm Page 130 Friday, December 21, 2007 2:30 PM

CH AP T E R 7 ■ P R O V ID E R S 131

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 9/5/2007 10:37 PM Code Snippets
d---- 8/18/2007 4:32 PM Downloads
d---- 10/2/2007 12:05 AM PowerShell

Removing mapped drives is a matter of calling Remove-PSDrive. Remember to navigate
away from those drives, so that they are not in use; otherwise, the removal operation will fail:

PS> Remove-PSDrive net
Remove-PSDrive : Cannot remove drive 'net' because it is in use.
At line:1 char:15
+ Remove-PSDrive <<<< net
PS> c:
PS> Remove-PSDrive net
PS>

Drive Scope
Interestingly enough, drives obey scoping rules. Similar to rules for variables, a drive that is
registered in a function or a script block will shadow a drive having the same name that has
been declared before. Exiting the function or the script block will effectively unregister the
drive. Here is a function that maps a drive and returns the root item:

PS> function Get-Documents()
 {
 New-PSDrive -name docs -PSProvider FileSystem `
 -Root C:\Users\Hristo\Documents

 return (Get-Item docs:\)
 }

PS> Get-Documents

Name Provider Root CurrentLo
 cation
---- -------- ---- ---------
docs FileSystem C:\Users\Hristo\Documents

PSPath : Microsoft.PowerShell.Core\FileSystem::C:\Users\Hri
 sto\Documents\
...

PS> cd docs:
Set-Location : Cannot find drive. A drive with name 'docs' does not ex
ist.
At line:1 char:3
+ cd <<<< docs:
PS>

Deshev_940-3C07.fm Page 131 Friday, December 21, 2007 2:30 PM

132 CH AP T E R 7 ■ P R O V ID E R S

We can use the docs: drive only from within the function. The error message we get when
we try to access the drive from outside the function shows that the drive is not available anymore.

Navigating to Drives
You might have been wondering, from the examples you have seen so far, how we could use
the cd command to switch to a new current drive. If you are an experienced cmd.exe user, you
would not expect that to work—the cd command can only change to new directories on the
current drive. Here is how that works when running cmd.exe:

C:\>cd d:\

C:\>

As you can see, the current drive remains set to C:. If you dig deeper, you will notice that
cmd.exe keeps a “current” folder for every drive that it knows about. We can set the current
folder to a drive other than the current one, and it will be available once we switch to that drive.
For example, if we are currently in the C:\ location and cd to D:\tmp, we will change the current
folder for the D: drive but will not navigate to that location. We can see that we really changed
the current folder for the D: drive only after switching to it.

C:\>cd D:\tmp

C:\>D:

D:\tmp>

There are no such things as drive-specific current folders in PowerShell. There is only one
current location, and it applies to all drives. That means we can change drives using the cd
command, which is really an alias for the Set-Location cmdlet. Here is how that works:

PS> Get-Location

Path

C:\

PS> Set-Location D:\tmp
PS> Get-Location

Path

D:\tmp

In fact, the C: and D: commands and so on are not built-in shell commands. They are func-
tion names (yes, the colon character is valid for function names!), and PowerShell, by default,
defines 26 functions that allow us to switch to letter drives. Here is how to get them:

Deshev_940-3C07.fm Page 132 Friday, December 21, 2007 2:30 PM

CH AP T E R 7 ■ P R O V ID E R S 133

PS> Get-Command [A-Z]:

CommandType Name Definition
----------- ---- ----------
Function A: Set-Location A:
Function B: Set-Location B:
Function C: Set-Location C:
…
Function Z: Set-Location Z:

You can see that the functions call Set-Location to navigate to the respective drive.

PROVIDER-QUALIFIED PATHS

Drives are the most convenient way to reference an item; they allow us to map an item and access it with
shorter paths. Drives are not the only way to access items, though. Each provider exposes a full provider-qualified
path that usually takes the form of [ProviderName]::[Provider-local path]. Let’s take a look at how
those paths look for the file system provider:

PS> dir C:\

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 9/5/2007 10:37 PM <DIR> Code Snippets
d---- 8/18/2007 4:32 PM <DIR> Downloads
d---- 6/29/2007 4:10 PM <DIR> inetpub
. . .

See the Microsoft.PowerShell.Core\FileSystem::C:\ header? This is the provider-qualified
path that points to the C:\ item served by the FileSystem provider. Here is how that looks for the
HKEY_CURRENT_USER registry hive:

PS> dir HKCU:\

 Hive: Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER

SKC VC Name Property
--- -- ---- --------
 0 1 .AUP {(default)}
 2 0 AppEvents {}
. . .

Deshev_940-3C07.fm Page 133 Friday, December 21, 2007 2:30 PM

134 CH AP T E R 7 ■ P R O V ID E R S

We get the Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER path, which we can use to
navigate to that location. The best part is that that path works without having a drive mapped to that location:

PS> Remove-PSDrive HKCU
PS> cd Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER
HKEY_CURRENT_USER
PS> Get-Location

Path

Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER

As you can see, the current folder looks and works like a normal drive-qualified path. Note that we
removed the HKCU: drive in the example for testing purposes; the simplest way to get it back is to restart
your shell session.

Provider Capabilities
I’ve already mentioned that not all providers are created equal. The built-in providers have
different capabilities, and some providers may not support all item-related cmdlets. Custom
providers are in the same situation. We will describe several categories of providers according
to their capabilities and the cmdlet groups they support. Under the hood, the various providers,
having different capabilities, are implemented as classes inheriting from base classes, which
do or don’t implement several interfaces. While listing the provider capability types, I will
mention how the different built-in providers support those cmdlets and list any peculiarities.

Basic Provider Capabilities
The absolute minimum for a provider is to be able to properly initialize the shell session and
register with it. This provides no useful functionality to cmdlets but lets the provider appear in
the report returned by Get-PSProvider.

Drive Providers
Providers having the drive capability can register and unregister new drives; they support the
New-PSDrive and Remove-PSDrive cmdlets. A provider that cannot register a drive is, of course,
useless, and all built-in providers support those functions.

Item Providers
These are providers that can work with items. They support the following cmdlets:

• Clear-Item clears the content of the item and replaces it with an empty value. The empty
value is provider specific: it can be an empty value when working with files, no values
and subkeys when working with the registry, or $null when working with variables.

• Get-Item gets a reference to an item given a location.

Deshev_940-3C07.fm Page 134 Friday, December 21, 2007 2:30 PM

CH AP T E R 7 ■ P R O V ID E R S 135

• Invoke-Item invokes the default action for the item at the specified path. It usually treats
the file as executable and runs or opens it with the associated application.

• Set-Item sets a new value for an item. Its implementation is provider specific: it can
change a file’s contents, set a new variable value, or set a value for the default value for
a registry key.

• Resolve-Path expands wildcards and returns paths that match the wildcard expression.

• Test-Path verifies if a path exists and returns $true; otherwise, $false.

Being able to register drives and work with items is the minimum a provider has to support
to be of any use. Of the built-in providers, every one supports these capabilities.

Item Container Providers
Item container providers can work with hierarchical items and can return items that contain
other items. Here are the cmdlets that are supported by this provider type:

• Copy-Item copies an item from one parent location to another.

• Get-ChildItem gets all child items for the given location. This is how the FileSystem
provider dir command is actually implemented. In fact, dir is an alias for Get-ChildItem.
The Environment, Variable, Function, and Alias providers implement this functionality
in a somewhat strange way. They will always return the item at the specified location
when you ask for its children. Get-ChildItem behaves in exactly the same way Get-Item
does for these four providers: they are not really hierarchical, but they are considered
item container providers (because they use the other container functionality: copying,
renaming, creating, and removing items). It is very likely that the funny Get-ChildItem
implementation is there so that we do not get an error. Here is an example:

PS> cd alias:
PS> Get-ChildItem dir

CommandType Name Definition
----------- ---- ----------
Alias dir Get-ChildItem

PS> cd env:
PS> Get-ChildItem path

Name Value
---- -----
Path C:\Windows\System32\WindowsPowerShel...

• New-Item will create a new item at the specified location and possibly set a value. The
item can be re-created if it already exists if the –Force parameter is used.

• Remove-Item deletes an item at the specified location. The familiar file deletion operation
del is actually an alias for Remove-Item.

• Rename-Item renames the item at the specified location.

Deshev_940-3C07.fm Page 135 Friday, December 21, 2007 2:30 PM

136 CH AP T E R 7 ■ P R O V ID E R S

All built-in providers are item container providers. Some of them do not really have a hier-
archical structure, as shown in the Get-ChildItem example.

Navigation Providers
Navigation providers support advanced operations that involve more than one item container.
They support the following cmdlets:

• Join-Path takes two path components and joins them in a single path. It can optionally
resolve the newly created path and raise an error if it does not exist.

• Move-Item moves an item from its current container to the specified location.

Of the built-in providers, only FileSystem, Registry, and Certificate are navigation providers.
Trying to use one of those operations for paths in drives registered by other providers will result
in an error. Here is what happens when we try to move an alias:

PS> Move-Item alias:\dir alias:\dir2
Move-Item : Cannot retrieve the dynamic parameters for the cmdlet. The
 NavigationCmdletProvider methods are not supported by this provider.
At line:1 char:10
+ Move-Item <<<< alias:\dir alias:\dir2

Item Content Providers
Item content providers support operations involving an item’s contents, for example, changing,
adding to, and clearing them. Here are the cmdlets that use the item content capabilities:

• Add-Content adds the value to the specified item’s content.

• Clear-Content sets the item’s content to an empty value. The empty value is provider
specific.

• Get-Content retrieves the content of the specified item.

• Set-Content sets the content of the specified item, destroying all old content in the process.

Almost all built-in providers are item content providers. The exceptions are the Registry
and Certificate providers.

Item Property Providers
Item property providers allow items to have and expose properties that can be retrieved and
modified. The cmdlets that rely on these capabilities follow:

• Clear-ItemProperty deletes the value of a property and sets it to a provider-specific
empty value. The property itself is not deleted.

• Get-ItemProperty retrieves the item property value.

• Set-ItemProperty sets a new value for the specified item property.

Only two providers support the item property capability: FileSystem and Registry.

Deshev_940-3C07.fm Page 136 Friday, December 21, 2007 2:30 PM

CH AP T E R 7 ■ P R O V ID E R S 137

Dynamic Item Property Providers
Providers supporting the dynamic item property capabilities can have properties added and
removed dynamically at runtime. They also support copying and moving properties. Here are
the cmdlets available for working with that capability:

• Copy-ItemProperty copies a property and its value from one item to another.

• Move-ItemProperty moves a property and its value from one item to another.

• New-ItemProperty creates a new property for the specified item. It can optionally set a
value for the new property.

• Remove-ItemProperty removes a property and its value from the item.

• Rename-ItemProperty renames a property preserving its value.

The dynamic item property capability is a strange one. None of the built-in providers
support it except the Registry provider. It seems that the capability has been created specifi-
cally for the Registry provider where properties are used to represent registry key values and
values can be created, removed, copied, and moved.

Item Security Descriptor Providers
Some providers allow for an item to have a security descriptor or an access control list, so that
it can be protected against unauthorized access. That item can be a file or some other operating
system object. There are just two cmdlets that use this capability:

• Get-Acl gets the access control list (ACL) for the item at the specified location.

• Set-Acl sets a new ACL for the item at the specified location.

This capability is supported by only the FileSystem and Registry providers. That means
that we can read and modify the access control lists for both files and registry keys.

Summary
Providers are a wonderful mechanism of abstracting all types of interaction with the outside
world. In this chapter, you learned to register and use newly created drives to make paths shorter
and save keystrokes. We then explored the built-in providers and their capabilities. Having an
idea about what capabilities are supported in a provider helps you to know which cmdlets can
be used on items that reside inside drives registered from that provider.

Taking the time to make yourself comfortable with using the default providers is definitely
worth the effort. In Chapter 10, we will be using the Certificate provider to get information about
registered certificates when we are signing our scripts. Chapter 21 discusses the PowerShell
Community Extensions project, which ships several providers that make working with Active
Directory, the Internet Explorer 7 RSS feed store, and the .NET global assembly cache a lot easier.

Deshev_940-3C07.fm Page 137 Friday, December 21, 2007 2:30 PM

139

■ ■ ■

C H A P T E R 8

Script Files

I started learning about computers and programming by playing with small BASIC programs
on an Apple II-compatible computer. After making my first steps in the language and the envi-
ronment, I started typing up programs that I found in magazines or books. Most often, those
were little games that I could type in an hour or so and, if I had not made a mistake while doing
that, I could play the game for some time afterward. I typed BASIC code without a text editor or
anything like that; I entered raw code at the console. My biggest problem in doing that was that
I did not know how to save the program to a floppy disk, so that I could run it later. I had to
learn how to do that in order to build larger programs.

PowerShell’s script language offers much more power and is much more expressive than
that long-forgotten BASIC dialect. Hey, it was built close to thirty years later—it has to be better!
Even armed with that power, we still need a way to save our code and reuse it later. Imagine
trying to write a twisted command that has a long chain of parameters. You wrestle with it, go
through the documentation, try several approaches, and finally, you nail it. You do not need to
remember every parameter you just learned by heart—all you need is to save the command to
a script file and run that when you need that command again.

We need script files when we want to create small script utilities that we can run on a regular
basis. We also need to use them in those cases when we end up creating complex modular
scripts that keep their code in separate files to make developing and maintaining everything
manageable. In this chapter, you will learn how to handle all of those scenarios. We will go
through the process of creating script files, passing parameters, returning values, and building
modular scripts that span several files.

Creating Scripts
The typical PowerShell script is a text file that we can create using various tools. By default,
those files carry the .ps1 file extension. You can create them using Notepad, but it is best if you
use a more powerful tool, one of the programmer text editors that offer features like syntax
highlighting and even IntelliSense-like word completions. My favorite editor, which helped me
with the examples for this book, is Notepad++, a free notepad.exe replacement that knows
about many programming languages and offers syntax highlighting, word completions, and
much more. You can even create scripts from the PowerShell console using here strings and
the Set-Content cmdlet. Here is how to create our very first script:

Deshev_940-3C08.fm Page 139 Thursday, December 20, 2007 7:57 PM

140 CH AP T E R 8 ■ SC R I PT F IL E S

PS> $code = @"
Write-Host "Hello, world!"
"@

PS> Set-Content hello-world.ps1 $code
PS> type hello-world.ps1
Write-Host "Hello, world!"

As you can see the hello-world.ps1 file is a plain text file, and we can inspect its contents
using the type command (which is really an alias of Get-Content).

Invoking Scripts
Now that we have our first script in place, we can go ahead and invoke it. First, let’s see how
PowerShell looks for files to invoke: all it does is look in the PATH environment variable, and
interestingly enough, the current folder is not in the system PATH. That means that invoking a
script in the current folder will require you to prefix it with the path, so the command in our
case becomes .\hello-world.ps1. That will look familiar if you come from a UNIX background
where a shell would not include the current folder in its PATH variable.

cmd.exe takes a different approach and includes the current folder in the PATH. If you are a
seasoned cmd.exe user, that peculiarity may require some time getting used to. The rationale
behind this behavior is that it is a security risk to have the current folder in the PATH. If the
inverse were the case, programs in the current folder could shadow default programs and may
allow an attacker to execute malicious code. Suppose that a malicious user, who can write to a
shared folder, creates a script or executable with the same name as a legitimate utility. If the
administrator visits that folder, logged in with his or her administrator credentials, and tries to
invoke that utility, he or she would execute the malicious program in the current folder, allowing
the attacker to run code under administrator credentials, thus elevating his or her privileges. That
is why both PowerShell and UNIX shells require you to explicitly state that you want to execute a
program from the current folder by prefixing the program name with the path specifier, .\.

Now that we are talking about security, you may have tried to invoke our hello-world.ps1
script file and may have gotten the following error:

PS> .\hello-world.ps1
File D:\deshev\Writing\PowerShell book\Text\08 - Script Files\hello-wo
rld.ps1 cannot be loaded because the execution of scripts is disabled
on this system. Please see "get-help about_signing" for more details.
At line:1 char:17
+ .\hello-world.ps1 <<<<

This is PowerShell’s secure-by-default building principle in action. The shell has several
execution policies that configure the security level and user privileges for running scripts. By
default, the shell runs in the Restricted policy level, which means that no scripts are allowed
to execute. We can check the execution policy level by calling the Get-ExecutionPolicy cmdlet:

PS> Get-ExecutionPolicy
Restricted

Deshev_940-3C08.fm Page 140 Thursday, December 20, 2007 7:57 PM

CH AP T E R 8 ■ SC R IP T F I L E S 141

We need to change that to run scripts. The preconfigured script execution policies for
PowerShell are the following:

• Restricted: No script will be run under any circumstances. No matter if you are running
under administrator user credentials or not, PowerShell will refuse to run your scripts.
Only interactive commands, typed at the console, will be executed.

• AllSigned: PowerShell will run only scripts that have been signed by a trusted third party. To
get details about how script signing works and how to sign a script, please see Chapter 10.

• RemoteSigned: The shell will require a signature from a trusted third party for all scripts
that come from the Internet, whether downloaded from sites or received by e-mail.
Locally created scripts will run without needing to be signed.

• Unrestricted: All scripts are run without any restrictions with regard to origin or a valid
signature.

The RemoteSigned execution policy is a good combination of both a good level of security
and ease of use. We will switch to that level by calling the Set-ExecutionPolicy cmdlet. Note
that this cmdlet has to be run by an administrator user. Windows Vista users will need elevated
privileges too. The easiest way to ensure elevated privileges is to right-click the PowerShell
shortcut icon and choose “Run as administrator” from the context menu. Now that you have a
shell session running with elevated privileges, you can run this command to change the execu-
tion policy:

PS C:\> Set-ExecutionPolicy RemoteSigned
PS C:\> Get-ExecutionPolicy
RemoteSigned

We have successfully switched to a less restrictive policy level, and it is now time to run our
script. You do not need elevated privileges anymore, so it is best that you start a normal shell
session now. Our script is a local one, so it does not need to be signed, and here it is

PS> .\hello-world.ps1
Hello, world!

You can omit the .ps1 extension when calling a script and provide the file base name only,
like this:

PS> .\hello-world
Hello, world!

In addition, the familiar script block execution operator, &, works for script files too:

PS> & .\hello-world.ps1
Hello, world!
PS> & .\hello-world
Hello, world!

Deshev_940-3C08.fm Page 141 Thursday, December 20, 2007 7:57 PM

142 CH AP T E R 8 ■ SC R I PT F IL E S

Passing Parameters
To paraphrase a popular saying, “No script is an island.” Scripts do not exist by themselves;
they need to interact with the outside world. They can accept parameters as a way of specifying
actions that need to be performed, action targets, and whatnot. Similar to functions and script
blocks, scripts have the $args variable set up with the parameters passed at the time of their
invocation. Let’s use that to create a small script that looks for music files matching a specified
wildcard inside a given folder:

$where = $args[0]
$what = $args[1]

if (!$what -match "\.mp3$")
{
 $what = $what + ".mp3"
}
Get-ChildItem $where $what –Recurse

The script augments the $what parameter by adding the .mp3 extension if the wildcard
does not already end with it. That will limit the search to only files with the .mp3 extension. The
code will recursively enumerate all files and return the ones matching the $what wildcard. We
save the preceding code to a file named Get-Music.ps1. Here is how I use it to rummage through
my “The Cranberries” music collection:

PS> .\Get-Music.ps1 'D:\Music\The Cranberries' *salvation*

 Directory: Microsoft.PowerShell.Core\FileSystem::D:\Music\The Cran
 berries\1996 - To The Faithful Departed

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 2/5/2006 1:36 PM 2373632 02 Salvation.mp3

 Directory: Microsoft.PowerShell.Core\FileSystem::D:\Music\The Cran
 berries\Bonus CD - Live in Stockholm - Limited edition

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 2/5/2006 1:37 PM 2449536 04-Salvation (live).mp3

Of course, just like functions and script blocks do, script files support the param statement
that allows us to name our parameters and avoid doing manual value extraction from the $args
collection. Here is how we can rewrite our Get-Music.ps1 script using named parameters:

Deshev_940-3C08.fm Page 142 Thursday, December 20, 2007 7:57 PM

CH AP T E R 8 ■ SC R IP T F I L E S 143

param ($where, $what)

if (!$what -match "\.mp3$")
{
 $what = $what + ".mp3"
}
Get-ChildItem $where $what –Recurse

Now, we save the preceding code snippet to the Get-Music-Params.ps1 file. The param
technique allows us to name our parameters at the script invocation site too:

PS> .\Get-Music-Params.ps1 -where 'D:\Music\The Cranberries' `
 -what *zombie*

 Directory: Microsoft.PowerShell.Core\FileSystem::D:\Music\The Cran
 berries\1994 - No Need To Argue

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 2/5/2006 1:36 PM 5865472 04 Zombie.mp3

Processing pipeline input is done by defining begin, process, and end blocks, again just like
script blocks and functions. Here is a small script that gets a bunch of files and filters out any
that are smaller than the given size:

param ($sizeLimit)

begin
{
}

process
{
 if ($_.Length -ge $sizeLimit)
 {
 $_
 }
}

end
{
}

Save the code to a file called Filter-Smaller.ps1. The script accepts a size limit variable
that is then used to test every item in the pipeline and include the item in the result if the file
size (the Length property) is greater than or equal to the size limit. All the action happens in the

Deshev_940-3C08.fm Page 143 Thursday, December 20, 2007 7:57 PM

144 CH AP T E R 8 ■ SC R I PT F IL E S

process block, as it is invoked for every item in the input pipeline. The begin and end blocks do
nothing in this example, but I like to include them, even if empty, for completeness. Here is
how to get the scripts larger than 130 bytes using the preceding script:

PS> dir *.ps1 | .\Filter-Smaller.ps1 130

 Directory: Microsoft.PowerShell.Core\FileSystem::D:\deshev\Writing
 \PowerShell book\Text\08 - Script Files

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 10/13/2007 1:02 AM 137 Get-Music.ps1

While we are discussing parameters, we should mention variables too. Scripts have access
to all variables that have been defined by the shell user or by other scripts. Much like functions,
scripts create a separate variable scope—and that means that they can read variables from
their invocation site and its parent scopes, but writing to the same variables will shadow the
parent ones. Let’s see how that new variable scope may affect our code. First, let’s create a
script that accesses variables from its parent:

PS> $name = "John"
PS> Set-Content Variable-Test.ps1 "Write-Host $name"
PS> .\Variable-Test.ps1
John

What happens when we try to modify the variable’s contents? A new variable gets created
that shadows the original one. This way, the original value is protected from accidental overwrites
by scripts that we call. Let’s see that in action too—first, the script file, Variable-Test.ps1,
which modifies the $name variable:

Write-Host "Within script original: $name"
$name = "Mike"
Write-Host "Within script modified: $name"

Next, we can call it:

PS> $name = "John"
PS> .\Variable-Test.ps1
Within script original: John
Within script modified: Mike
PS> Write-Host "Outside script: $name"
Outside script: John

As you see, the variable appears to be modified for the inner script only. We can modify
variables in the parent scope, but we have to explicitly request that by using the $global scope
prefix or the Get-Variable/Set-Variable cmdlet. Let’s look at the first approach in the following
Variable-Test2.ps1 script code:

Deshev_940-3C08.fm Page 144 Thursday, December 20, 2007 7:57 PM

CH AP T E R 8 ■ SC R IP T F I L E S 145

Write-Host "Within script original: $global:name"
$global:name = "Mike"
Write-Host "Within script modified: $global:name"

Calling it gets us different results than the previous script:

PS> $name = "John"
PS> .\Variable-Test2.ps1
Within script original: John
Within script modified: Mike
PS> Write-Host "Outside script: $name"
Outside script: Mike

The Set-Variable approach has to use the –Scope parameter to modify variables from the
parent scope. That works in the same way as with functions and script blocks, and you can refer
to Chapters 4 and 5 for examples.

Often, we want to isolate a variable or function so that it is global to a specific script. We
may want all functions and script blocks defined in the script file to be able to access that vari-
able or function, but we may explicitly want to make that object inaccessible outside the script.
We cannot use the $global scope prefix, as that will expose a variable or function to all code no
matter if it is defined in our script file. The solution is to use the $script scope prefix. To demon-
strate this, we use our Variable-Test3.ps1 script:

$script:name = "Jeremiah"

function Modify-Name()
{
 $script:name = "Mike"
 Write-Host "Within script function scope: $script:name"
}

Write-Host "Original script global scope: $script:name"
Modify-Name
Write-Host "Modified script global scope: $script:name"

Our script has two scopes: the script global scope and the Modify-Name function scope.
No matter where we are, we can reference the script global name variable by referring to it as
$script:name. Executing the script does not expose the script global variable to code outside
the script:

PS> $name = "John"
PS> .\Variable-Test3.ps1
Original script global scope: Jeremiah
Within script function scope: Mike
Modified script global scope: Mike
PS> Write-Host "Outside script: $name"
Outside script: John

As you can see, the $name variable remains unaffected.

Deshev_940-3C08.fm Page 145 Thursday, December 20, 2007 7:57 PM

146 CH AP T E R 8 ■ SC R I PT F IL E S

We also often want a variable or function that a script defines to be accessible in the current
scope; in other words, we want to allow a script access to all our current variables and functions.
We do that by prefixing the script name with a dot (.)—this is known as dot-sourcing a script.
Recall our original Variable-Test.ps1 example script:

Write-Host "Within script original: $name"
$name = "Mike"
Write-Host "Within script modified: $name"

If we dot-source the script, it will modify the current $name variable instead of creating
another one:

PS> $name = "John"
PS> . .\Variable-Test.ps1
Within script original: John
Within script modified: Mike
PS> Write-Host "Outside script: $name"
Outside script: Mike

Note that it is important to leave a space between the dot and the script name. Dot-sourcing is
a useful technique that we will employ later in this chapter to move function declarations to
outside scripts and make them available to the current code.

Returning Values
Parameters are, most of the time, a one-way communications mechanism that will only pass
data from the environment to the script. We need to be able to return values from our scripts.
Sure, we can take the results of our computation and slap them in a global variable that can
later be accessed from the outside world, but this would be like denying that the last forty years
or so of computation research really existed. PowerShell provides a good way to return and
output values from a script, and that is what we should use.

An object that is not explicitly consumed by code either by being bound to a variable or
piped or redirected to another command is output to the pipeline for the next command. We
can use that to generate a bunch of objects from our scripts and output them. Here is a script
that outputs three temporary file names:

PS> $code = @"
"File1.tmp"
"File2.tmp"
"File3.tmp"
"@

PS> Set-Content Generate-TempFiles.ps1 $code
PS> $files = .\Generate-TempFiles.ps1
PS> $files
File1.tmp
File2.tmp
File3.tmp

Deshev_940-3C08.fm Page 146 Thursday, December 20, 2007 7:57 PM

CH AP T E R 8 ■ SC R IP T F I L E S 147

PS> .\Generate-TempFiles.ps1 | foreach { "File: " + $_ }
File: File1.tmp
File: File2.tmp
File: File3.tmp

As you can see, the values can be both assigned to a variable or can be passed down the
pipeline to a command like foreach.

A return statement outputs an object and stops execution. Let’s see how an explicit return
differs from a simple output operation:

PS> $code = @"
return "File1.tmp"
return "File2.tmp"
"@

PS> Set-Content Generate-TempFiles2.ps1 $code
PS> .\Generate-TempFiles2.ps1
File1.tmp

Execution stopped after the first return statement, and we got the first object only.
The return statement will exit the script if it is executed at the top-level scope. In fact, a

return operation will just exit the current scope, which means if we execute a return from a
script block or a function inside our script, we will exit only that script block or function. The
script will continue executing. To explicitly stop the script execution, we have to use the exit
statement. Here is how we can exit a script from within a function. Our code is placed in the
Explicit-Exit.ps1 file that looks like this:

function Verify-TextFile($file)
{
 if (!$file.EndsWith(".txt"))
 {
 Write-Host "$file is not a text file"
 exit
 }
}

$files = "Names.txt", "Names.doc", "Names2.xls"
foreach ($file in $files)
{
 Verify-TextFile $file
}

Running the script produces the following output:

PS> .\Explicit-Exit.ps1
Names.doc is not a text file

As you can see, we never got to the last item, Names2.xls—script execution ended when we
processed Names.doc.

Deshev_940-3C08.fm Page 147 Thursday, December 20, 2007 7:57 PM

148 CH AP T E R 8 ■ SC R I PT F IL E S

Executing PowerShell Scripts from
Other Environments
No matter how strongly we wish it, the entire world is not using PowerShell—yet! We will have
to integrate our PowerShell code with existing solutions. We can write a useful script and execute it
from a Windows scheduled task. We can transition an existing scripting solution piece by piece
by developing new parts in PowerShell or porting existing functionality to PowerShell and
integrating them with the existing solution by using command execution. All automation
environments, task scheduler services, software build systems, and so on can execute an
external command. That is where we can plug in a PowerShell script.

How do we run a PowerShell script from an external program then? Let’s try to do it from
within cmd.exe. I, and I suspect many experienced users, would expect that it would be suffi-
cient to invoke powershell.exe and pass the name of the script as a parameter—that’s not so:

H:\08 - Script Files>powershell.exe hello-world.ps1
The term 'hello-world.ps1' is not recognized as a cmdlet, function, operabl
e program, or script file. Verify the term and try again.
At line:1 char:15
+ hello-world.ps1 <<<<

Again, we are bitten by the fact that the current folder is not in the system PATH for PowerShell.
We can fix things by using the .\ prefix to tell PowerShell it has to look in the current folder:

H:\08 - Script Files>powershell.exe .\hello-world.ps1
Hello, world!

Things get a bit complex when you get to read PowerShell’s documentation and realize
that powershell.exe actually does not support getting script names at the command line. What
it really does is accumulate all its parameters and treat them as script code. This is best illus-
trated by a script file whose name contains spaces or other characters that PowerShell will
interpret differently. Here is what happens:

H:\08 - Script Files>powershell.exe ".\hello world.ps1"
The term '.\hello' is not recognized as a cmdlet, function, operable progra
m, or script file. Verify the term and try again.
At line:1 char:8
+ .\hello <<<< world.ps1

PowerShell treats .\hello as a different command and complains that it cannot find it. We
have to use some trickery to get around this: we have to wrap the script name in quotes and use
the execute operator, &, to run the script:

H:\08 - Script Files>powershell.exe "& '.\hello world.ps1'"
Hello, world!

A lot of users on the Internet, me included, think this is ugly as hell. Hopefully, the Power-
Shell folks at Microsoft have recognized that as a problem and will provide a better way to call
scripts in the next version of the shell.

Now that we know how to run PowerShell scripts from other programs, we are left with
providing parameters and collecting output just as we would do with any other console program.

Deshev_940-3C08.fm Page 148 Thursday, December 20, 2007 7:57 PM

CH AP T E R 8 ■ SC R IP T F I L E S 149

PowerShell allows us to create well behaved console programs that can return an exit code and
use that to signal that something special happened to the outside world. We can do that by
passing an exit code to the exit statement—that will both exit the currently running script and
pass the error code to the environment. Here is how to write a script that returns 1 if it is given
a text file, 0 otherwise. We will call the script Is-TextFile.ps1, and the code follows:

param ($file)

if ($file -like "*.txt")
{
 exit 1
}
else
{
 exit 0
}

Running the script from within cmd.exe and inspecting the ERRORLEVEL global variable that
contains the exit code yields the following:

H:\08 - Script Files>powershell.exe "& '.\Is-TextFile.ps1' test.txt"

H:\08 - Script Files>echo %ERRORLEVEL%
1

H:\08 - Script Files>powershell.exe "& '.\Is-TextFile.ps1' Is-TextFile.ps1"

H:\08 - Script Files>echo %ERRORLEVEL%
0

We can use this technique to signal errors and special cases to programs using our scripts.
This is the de facto standard mechanism to signal an error from a console application, and
many environments support verifying at the process exit code.

Developing and Maintaining Script Libraries
Sooner or later, you will be tasked with creating a bigger and more complex solution that uses
PowerShell as its implementation language. Before you know it, you can get in a situation
where every piece of code is jammed in a single file and you can no longer find your way
around in the code that you wrote yourself. This is an unpleasant situation to be in, and you
have to be aware of your options for separating script code across several files to make things
more manageable. In addition to being able to quickly navigate to the right spot in the right file,
splitting code in several pieces makes it more reusable. It is quite common for a useful function
to grow out of its first client code, get moved to another file, and later be included in many files
that use it. In practice, I usually end up with a folder in my system PATH that contains useful
scripts and scripts with useful functions that I can easily include in any script to start producing
code that works in no time.

Deshev_940-3C08.fm Page 149 Thursday, December 20, 2007 7:57 PM

150 CH AP T E R 8 ■ SC R I PT F IL E S

Dot-sourcing as a Means to Include Script Libraries
Script libraries are normal files that contain useful functions. They are ordinary PowerShell
scripts that do not execute an action—they just define several functions and let the library
client code call those to do the real job. Here is a sample library script, Library1.ps1:

function LibHello()
{
 Write-Host "LibHello2"
}

Write-Host "Library1.ps1 script included"

Including or importing a script library in a script file is a matter of executing it. That is why
good programming practice insists that script libraries containing no executable code—function
definitions only. Our sample library contains a small diagnostic message that we should delete
from a real library.

Here is how we import the library from a script, Lib-User-DotSource.ps1, and call its
LibHello function:

. .\Library1.ps1

LibHello

As you can see, we do nothing other than dot-sourcing the Library.ps1 script. Keep in
mind that the space between the initial dot and the script name is important; you will get an
error if you omit it. Here is the output:

PS> .\Lib-User-DotSource.ps1
Library1.ps1 script included
LibHello2

We first execute the library script and get the diagnostic message and then execute the
function code. We can use this technique to split our code and test if it works in isolation. For
example, we can include a single library file in a different test script and test if the functions
defined in the library work correctly.

The Library Path Problem
The preceding technique has one severe disadvantage: it treats all paths to library scripts as
relative paths with respect to the current folder. It is not a problem of the technique per se; this
is how PowerShell works. Assigning blame aside, this is a big problem because the script will
break when you execute it from a different folder. Here is what happens if we execute the previous
script from the upper directory:

PS> cd ..
PS> & 'Z:\08 - Script Files\Lib-User-DotSource.ps1'
The term '.\Library1.ps1' is not recognized as a cmdlet, function, ope
rable program, or script file. Verify the term and try again.

Deshev_940-3C08.fm Page 150 Thursday, December 20, 2007 7:57 PM

CH AP T E R 8 ■ SC R IP T F I L E S 151

At Z:\08 - Script Files\Lib-User-DotSource.ps1:1 char:2
+ . <<<< .\Library1.ps1
The term 'LibHello' is not recognized as a cmdlet, function, operable
program, or script file. Verify the term and try again.
At Z:\08 - Script Files\Lib-User-DotSource.ps1:3 char:9
+ LibHello <<<<

Chaos ensues, because the shell looks for Library.ps1 in the current folder and does not
find it, which causes a nonterminating error. Execution continues with the assumption that the
LibHello function does not exist, which generates another error.

To solve this problem, we need a way to base our library inclusion paths to the folder of the
current script to predictably include library files and not have that break when the script is
called from another directory. How do we do that? PowerShell has a built-in variable called
$MyInvocation that can help us here. This variable contains information about the current
command invocation and is set whenever we invoke a script, function, or a script block. Let’s
create a script, ScriptDirectory-Test.ps1, that will return the current invocation details from
within the script. Here is the script code:

return $MyInvocation

Now, pass that object to the Get-Member cmdlet to see what we are really getting back:

PS> .\ScriptDirectory-Test.ps1 | Get-Member -MemberType Property

 TypeName: System.Management.Automation.InvocationInfo

Name MemberType Definition
---- ---------- ----------
InvocationName Property System.String InvocationName {get;}
Line Property System.String Line {get;}
MyCommand Property System.Management.Automation.CommandInf...
OffsetInLine Property System.Int32 OffsetInLine {get;}
PipelineLength Property System.Int32 PipelineLength {get;}
PipelinePosition Property System.Int32 PipelinePosition {get;}
PositionMessage Property System.String PositionMessage {get;}
ScriptLineNumber Property System.Int32 ScriptLineNumber {get;}
ScriptName Property System.String ScriptName {get;}

We get an InvocationInfo object, and we are interested in the MyCommand property that holds
a CommandInfo object. Let’s pass it to Get-Member instead to see what properties it holds for us by
modifying our test command:

PS> (.\ScriptDirectory-Test.ps1).MyCommand | `
Get-Member -MemberType Property

 TypeName: System.Management.Automation.ExternalScriptInfo

Deshev_940-3C08.fm Page 151 Thursday, December 20, 2007 7:57 PM

152 CH AP T E R 8 ■ SC R I PT F IL E S

Name MemberType Definition
---- ---------- ----------
CommandType Property System.Management.Automation.CommandTypes Co...
Definition Property System.String Definition {get;}
Name Property System.String Name {get;}
Path Property System.String Path {get;}

Bingo! We get an ExternalScriptInfo that is a type of CommandInfo object. See the Path
property? That is what we really need here. Let’s now use it to get the proper script path:

PS> (.\ScriptDirectory-Test.ps1).MyCommand.Path
Z:\08 - Script Files\ScriptDirectory-Test.ps1

Now, we wrap this into a function that will get the script path and return only the directory
name, which we will save that to a new script file: Get-ScriptDirectory.ps1. Here is the code:

function Get-ScriptDirectory
{
 $invocation = $script:MyInvocation
 Split-Path $invocation.MyCommand.Path
}

Write-Host (Get-ScriptDirectory)

And here is the result that we get when we execute it:

PS> .\Get-ScriptDirectory.ps1
Z:\08 - Script Files

The code needs some explaining here. Remember I told you that $MyInvocation changes
every time we execute a command, be it a function, a script, or a script block? That is what
happens when we call the Get-ScriptDirectory function. We do not need the function invoca-
tion details; we need the script invocation ones instead. We could have used Get-Variable (see
Chapter 4 for details) to get the $MyInvocation from the parent scope, but we are not guaran-
teed that the function will be called from the script global scope, and the parent scope can be
that of another function. That is why we use the $script scope prefix to get the script invocation
details. Finally, we pass the path to the script through the Split-Path cmdlet that will return
the directory part only.

With the Get-ScriptDirectory function in our toolbox, we can use it to include library
scripts in a way that does not depend on the current folder. We will create a script, Lib-User.ps1,
that uses the function to include the Library.ps1 script we dot-sourced earlier in this chapter.
Here is the Lib-User.ps1 code:

function Get-ScriptDirectory
{
 $invocation = $script:MyInvocation
 Split-Path $invocation.MyCommand.Path
}

Deshev_940-3C08.fm Page 152 Thursday, December 20, 2007 7:57 PM

CH AP T E R 8 ■ SC R IP T F I L E S 153

$dir = Get-ScriptDirectory
$path = Join-Path $dir "Library1.ps1"
. $path

LibHello

Running it is possible from any folder now:

PS> .\Lib-User.ps1
LibHello script included
LibHello2
PS> cd ..
PS> & '.\08 - Script Files\Lib-User.ps1'
LibHello script included
LibHello2

The Join-Path invocation and the dot-source operation after it still feel too verbose. To
make the library script inclusion shorter, we can create another function, Get-LibraryPath, as
that will allow us to use more concise syntax for including script libraries. This is how that func-
tion looks and how we can use it to rewrite the Lib-User.ps1 script:

function Get-ScriptDirectory
{
 $invocation = $script:MyInvocation
 Split-Path $invocation.MyCommand.Path
}

function Get-LibraryPath($relativePath)
{
 $dir = Get-ScriptDirectory
 return Join-Path $dir $relativePath
}

. (Get-LibraryPath "Library1.ps1")

LibHello

Having those two functions really makes including a path-independent script library a
matter of dot-sourcing the result of Get-LibraryPath: . (Get-LibraryPath "Library1.ps1").
This syntax is a lot more awkward than a simple dot-source operation, but the fact that it works
all the time justifies the price of using an extra set of parentheses around a function call. It is
best if you store those two function definitions in your shell profile script so that they are avail-
able all the time, and so you do not have to redefine them in all your scripts. For details on how
to do that, see Chapter 11.

Deshev_940-3C08.fm Page 153 Thursday, December 20, 2007 7:57 PM

154 CH AP T E R 8 ■ SC R I PT F IL E S

Summary
In this chapter, I started with the basics of creating and invoking scripts. Real scripters are
never content with the basics, so I continued by demonstrating how to pass parameters, pipe
objects, and return values from a script. We did that by comparing script files to functions and
script blocks—when it comes to rules about passing parameters, processing pipeline input,
and returning values, those three objects behave in the same way.

An important section of this chapter was dedicated to using PowerShell from other envi-
ronments like cmd.exe and integrating it: you learned how to call a PowerShell script and how to
return a meaningful exit code. This makes our script files good citizens in the console application
world.

Last, but not the least, we went through the process of creating maintainable script libraries.
We will use what we learned here in the next chapters, where we will be creating larger scripts
that solve complex real-world problems.

Deshev_940-3C08.fm Page 154 Thursday, December 20, 2007 7:57 PM

155

■ ■ ■

C H A P T E R 9

Error Handling and Debugging

The first steps in any programming environment usually involve doing the classic “Hello,
world” example, first introduced some time in the 1970s and now a time-honored tradition.
This chapter might well start with a “Hello, cruel world” example, as it will deal with a lot of
pain. Here is the place where we take the red pill and enter the real world of programs crashing
and misbehaving. To make things even more exciting, let’s assume we are placed right in the
middle of a production environment and everyone expects us to get things working.

No script or program is guaranteed problem-free execution. Anything can go wrong, and
we have to be ready for that. In this chapter, you will learn how to handle errors raised by
commands you issue and scripts that you execute. We will detect, react to, and suppress errors
depending on our goal at the time. We will go to the other side too: I will show you how to raise
errors if you detect an abnormal condition, bad input data, or something completely weird.

The second part of this chapter will focus on debugging our code. Programs and scripts
tend to grow over time to provide more and more to their demanding users. What starts as a
one-liner can easily grow until it no longer fits inside the skull of a single person—that is where
errors or bugs start creeping in. Finding and killing bugs is an important skill that every person
working with computers develops in time. Here, I will cover the tools that PowerShell offers
that can help when trouble strikes. We will be working with diagnostics and error prevention
techniques that can bring peace, discipline, and sanity to our script development routine.

Handling Errors
Errors in PowerShell can be of two kinds: terminating and nonterminating. The first kind of is
similar to the exception concept found in many programming languages. Those are errors that
are triggered because the command interpreter has encountered an exceptional situation and
cannot continue. Once we raise such an error, all further execution stops. Typical terminating
errors are raised by script syntax errors, trying to call nonexistent commands, or something
of a similar severity. User-raised errors resulting from the throw statement, which we will look
into later in this chapter, are also terminating errors.

Nonterminating errors are less severe. Those are usually errors indicating that the current
command cannot be completed, but the issues that caused them are not important enough to
stop further execution. PowerShell has a pipeline similar to the normal object output pipeline
reserved only for errors. Nonterminating errors are written to that pipeline, and the default
action there is to display them to the user using red colored text. A typical nonterminating error
is a file delete operation: it may fail for various reasons, but most of the time, we would want to
continue execution anyway.

Deshev_940-3C09.fm Page 155 Sunday, January 6, 2008 11:55 AM

156 CH AP T E R 9 ■ E R R O R H AN DL I N G A N D D E B U G G I N G

Let’s see that file delete error in action. We will define a function called
Raise-NonTerminatingError that will trigger a nonterminating error from a function
stored in the Error-Termination.ps1 script file. Here is the script:

function Raise-NonTerminatingError
{
 del nosuchfile.txt
}

Write-Host "script start"

Raise-NonTerminatingError

Write-Host "script end"

It prints a diagnostic message before and after calling the Raise-NonTerminatingError
function. Here is the result that we get after running the script:

PS> .\Error-Termination.ps1
script start
Remove-Item : Cannot find path 'Z:\09 - Error Handling and Debugging\n
osuchfile.txt' because it does not exist.
At Z:\09 - Error Handling and Debugging\Error-Termination.ps1:3 char:8
+ del <<<< nosuchfile.txt
script end

Even though we get an error message, we still see our “script start” and “script end” messages
printed to the console—that means script execution continues after the error. Let’s now trigger
a terminating error, from another function Raise-TerminatingError that we’ll call from our
script:

function Raise-NonTerminatingError
{
 del nosuchfile.txt
}

function Raise-TerminatingError
{
 del nosuchfile-terminating.txt -ErrorAction Stop
}

Write-Host "script start"

Raise-NonTerminatingError
Raise-TerminatingError

Write-Host "script end"

Deshev_940-3C09.fm Page 156 Sunday, January 6, 2008 11:55 AM

C H AP TE R 9 ■ E R R O R H AN D L I N G AN D DE B U G G IN G 157

As you can see, we instruct the del command to stop all execution—that is, raise a termi-
nating error if something goes wrong. Here is the result that we see after running our script again:

PS> .\Error-Termination.ps1
script start
Remove-Item : Cannot find path 'Z:\09 - Error Handling and Debugging\n
osuchfile.txt' because it does not exist.
At Z:\09 - Error Handling and Debugging\Error-Termination.ps1:3 char:8
+ del <<<< nosuchfile.txt
Remove-Item : Command execution stopped because the shell variable "Er
rorActionPreference" is set to Stop: Cannot find path 'Z:\09 - Error H
andling and Debugging\nosuchfile-terminating.txt' because it does not
exist.
At Z:\09 - Error Handling and Debugging\Error-Termination.ps1:8 char:8
+ del <<<< nosuchfile-terminating.txt -ErrorAction Stop

We get two errors this time. The nonterminating one that tries to delete a nonexistent file
comes first. The second error is what makes the difference here: we do not see our “script end”
output anymore. That means script execution stopped once the critical error was raised.

Common Error-Handling Parameters
All PowerShell cmdlets support a set of parameters related to error handling. We can run any
cmdlet and instruct it to generate additional output or perform a specific action in case an
error occurs. The parameters: ErrorAction, ErrorVariable, Debug, and Verbose are all a part of
the common parameters that every cmdlet must support.

We have already seen the ErrorAction parameter in the preceding example. The param-
eter is an enumeration that tells the cmdlet what to do when an error occurs. The possible
values follow:

• Continue: This is the default. The error is reported to the user and execution continues.
We saw this parameter in action in the Raise-NonTerminatingError function.

• Stop: The error is reported to the user and execution stops. As we saw in the
Raise-TerminatingError, this option causes the cmdlet to raise a terminating
error that usually stops all further execution. The “usually” part here means that
we can still set up an error trap that can catch and handle this error without term-
inating the script (you will see how to do that later in this section).

• SilentlyContinue: Errors are ignored. This option is similar to Continue with the only
difference that it does not write the error to the user. This is the perfect option for
suppressing errors that have no real significance and hiding them from the user. Here is
how to ignore a file deletion failure:

PS> del nosuchfile.txt -ErrorAction SilentlyContinue
PS>

• Inquire: This option causes the shell to prompt the user and let him or her decide what
to do next. Here is how our, now favorite, file delete operation looks when we set this option:

Deshev_940-3C09.fm Page 157 Sunday, January 6, 2008 11:55 AM

158 CH AP T E R 9 ■ E R R O R H AN DL I N G A N D D E B U G G I N G

PS> del nosuchfile.txt -ErrorAction Inquire

Confirm
Cannot find path 'Z:\09 - Error Handling and Debugging\nosuchfile.txt'
 because it does not exist.
[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help
(default is "Y"):

Answering Yes or Yes to All is the same as choosing the Continue action: you will get an error
message, but execution will continue. The Halt Command option behaves like the Stop error
action: you get a terminating error. The Suspend option is interesting: execution is temporarily
suspended and you are thrown a fully functional nested prompt that you can use to maybe
perform actions you forgot before running the command or look around trying to find out what
caused the error. The Inquire option is a powerful debugging tool that you will learn how to use
later on in this chapter. Type exit to return to the command and the same prompt:

PS> del nosuchfile.txt -ErrorAction Inquire

Confirm
Cannot find path 'Z:\09 - Error Handling and Debugging\nosuchfile.txt'
 because it does not exist.
[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help
(default is "Y"):S
PS> pwd

Path

Z:\09 - Error Handling and Debugging

PS> exit

Confirm
Cannot find path 'Z:\09 - Error Handling and Debugging\nosuchfile.txt'
 because it does not exist.
[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help
(default is "Y"):

Choosing whether to terminate our script is one thing, but getting hold of the real error is
a completely different matter. To get the error object that is generated by a cmdlet, we can
provide the ErrorVariable parameter. Most often, we need the error object when we use an
ErrorAction of SilentlyContinue so that we hide errors from our user but still know if an error
occurred. We can achieve that by checking if the variable that we configured as an error container
variable contains an error object. Let’s now create a new script, ErrorVariable.ps1, where we
can play with error variables. Here is how we can get the variables and test for error conditions:

Deshev_940-3C09.fm Page 158 Sunday, January 6, 2008 11:55 AM

C H AP TE R 9 ■ E R R O R H AN D L I N G AN D DE B U G G IN G 159

$files = dir z:\ -ErrorAction SilentlyContinue `
 -ErrorVariable errorVar
if ($errorVar)
{
 Write-Host "An error occurred getting files!"
}

del nosuchfile.txt -ErrorAction SilentlyContinue `
 -ErrorVariable errorVar
if ($errorVar)
{
 $realError = $errorVar[0]
 $realError | `
 Select FullyQualifiedErrorId,CategoryInfo,TargetObject | `
 Format-List

 $realError.InvocationInfo | `
 Select ScriptName,ScriptLineNumber,Line | Format-List
}

The $errorVar variable will hold a collection with more than one item if we got an error. We
do not expect the first command to generate an error. In the second if statement, we get some
of the properties for the error object and print them to the console using Format-List. So, this
is what running the script looks like:

PS> .\ErrorVariable.ps1

FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Commands.Rem
 oveItemCommand
CategoryInfo : ObjectNotFound: (Z:\09 - Error H...\nosuchfile
 .txt:String) [Remove-Item], ItemNotFoundExcept
 ion
TargetObject : Z:\09 - Error Handling and Debugging\nosuchfil
 e.txt

ScriptName : Z:\09 - Error Handling and Debugging\errorvariable.
 ps1
ScriptLineNumber : 7
Line : del nosuchfile.txt -ErrorAction SilentlyContinue -E
 rrorVariable e

Deshev_940-3C09.fm Page 159 Sunday, January 6, 2008 11:55 AM

160 CH AP T E R 9 ■ E R R O R H AN DL I N G A N D D E B U G G I N G

The error object that we got back is a System.Management.Automation.ErrorRecord object.
Our script outputs its most important properties. The FullyQualifiedErrorId is a unique iden-
tifier that we can use to verify that we have gotten exactly that error. We would not want to use
string operations to detect that from the error message text, because that message will vary
with localized versions of Windows. We can also get the error category, ObjectNotFound in our
case. That may come in handy if we want to perform the same action on similar errors, that is,
errors of the same category. The TargetObject property points to the object that we were working
with at the time the error occurred; this is most likely the object that generated the error itself.
If all else fails, we can turn to the Exception property and get the real .NET exception for our
error record. Our script tries to go even further when it comes to verbosity and descriptiveness.
It displays some of the properties of the error record InvocationInfo object. This object contains
information about the execution context at the time of the error, and from it, we can get the
actual script line that generated the error, its location in the script file, and the actual script file
name. Neat, huh?

The Verbose and Debug cmdlet parameters are instructions that will generate additional
information that will be printed on the console. Normally, that information is not printed so
that it does not clutter the console window, but it may be useful when we are troubleshooting
an error. Passing the Verbose and Debug switches to a command will make it generate that addi-
tional information. These parameters are intended primarily for script and cmdlet debugging,
and we will look into them later when we get to the debugging part.

Trapping Errors
Calling actions with an ErrorAction of SilentlyContinue and then following that with an if
statement to detect if an error has occurred is a good idea for one or two commands. It is a
perfectly valid approach for that super-important command that is the backbone of your script.
This approach has some shortcomings though: it is limited to operations involving cmdlets
only and errors can get thrown by many other operations. Even when working with cmdlets, in
many cases, we do not need to be as specific as catching errors one cmdlet at a time. One thing
is certain—we would not want to litter all our cmdlet invocations with an extra parameter and
an if statement just to be able to detect errors.

PowerShell solves this problem with its error trap language feature. A trap is an association
between a block of code and a specific error. The code is registered in the current script file,
function, or script block and is executed whenever the corresponding error occurs. Let’s now
use this feature to detect conversion errors that can be raised when trying to convert a string to
a date. The [datetime] cast operator will raise such errors when the input string is not in the
correct format. We can use a trap to write a script, Date-Traps.ps1, which goes over a collection
of strings and converts them to dates. We know that PowerShell will raise a System.Management.
Automation.PSInvalidCastException error, and we add a trap to handle that. Here is our
script code:

trap [System.Management.Automation.PSInvalidCastException]
{
 Write-Host "Error converting a string to date!"
 $realException = $_.Exception.InnerException
 Write-Host "Inner Exception: $($realException.GetType())"
}

Deshev_940-3C09.fm Page 160 Sunday, January 6, 2008 11:55 AM

C H AP TE R 9 ■ E R R O R H AN D L I N G AN D DE B U G G IN G 161

$dateStrings = "10/15/2007", "bad/date/format"
foreach ($dateString in $dateStrings)
{
 $date = [datetime] $dateString
 Write-Host $date
}

Since the trap statement accepts a script block, it complies with the convention of passing
the current ErrorRecord in the $_ variable. This time, we are interested in the Exception property.
It contains the PSInvalidCastException that has been raised by the shell. We can reach deeper
and get the actual .NET exception that was thrown by the .NET code used internally to actually
parse the string and convert it to a date. This is available via the InnerException subproperty.
This is what we get when we run our script:

PS> .\Date-Traps.ps1
10/15/2007 12:00:00 AM
Error converting a string to date!
Inner Exception: System.FormatException
Cannot convert value "bad/date/format" to type "System.DateTime". Erro
r: "The string was not recognized as a valid DateTime. There is a unkn
own word starting at index 0."
At z:\09 - Error Handling and Debugging\Date-Traps.ps1:11 char:35
+ $date = [datetime] $dateString <<<<

The first date was converted successfully, and the second one was not. The error triggered,
and our trap was executed showing the real .NET System.FormatException.

Suppressing Errors and Raising Them Again

The previous example handles an error, but it still shows the raw error message to the user.
What if we want to hide that message? This is where it all gets tricky and counterintuitive—at
least for those, like me, who are used to seeing the break and continue statements only in loops.
To hide the error, we have to use a continue statement. This statement will suppress the error
printout, and execution will continue with the next statement in the script. Let’s now add another
date to parse after the broken one; two diagnostic messages, one before and one after the loop;
and a continue statement in the handler. The code now looks like this:

trap [System.Management.Automation.PSInvalidCastException]
{
 Write-Host "Error converting a string to date!"
 $realException = $_.Exception.InnerException
 Write-Host "Inner Exception: $($realException.GetType())"
 continue
}

Write-Host "script begin"

Deshev_940-3C09.fm Page 161 Sunday, January 6, 2008 11:55 AM

162 CH AP T E R 9 ■ E R R O R H AN DL I N G A N D D E B U G G I N G

$dateStrings = "10/15/2007", "bad/date/format", "10/20/2007"
foreach ($dateString in $dateStrings)
{
 $date = [datetime] $dateString
 Write-Host $date
}

Write-Host "script end"

And here is what the output of our script looks like:

PS> .\Date-Traps.ps1
script begin
10/15/2007 12:00:00 AM
Error converting a string to date!
Inner Exception: System.FormatException
script end

We do not get the default error message anymore. Now, you can see why I emphasized the
“next statement” phrase—the continue statement will exit the loop and continue with the first
command after that. As you see, the “10/20/2007” string that we placed after the broken one
did not get processed, because the loop is the operation that caused the error. The entire loop
was terminated, and execution continued after that.

Suppressing an error and continuing execution is not the best recipe for every moment.
Severe errors require some action on our part, such as cleaning up and notifying the user as
well as stopping any further script execution. We can do that by using a break statement instead of
a continue one. This is what our trap block looks like now:

trap [System.Management.Automation.PSInvalidCastException]
{
 Write-Host "Error converting a string to date!"
 $realException = $_.Exception.InnerException
 Write-Host "Inner Exception: $($realException.GetType())"
 break
}

That small change significantly alters the way our script behaves. Here is the script output:

PS> .\Date-Traps.ps1
script begin
10/15/2007 12:00:00 AM
Error converting a string to date!
Inner Exception: System.FormatException
Cannot convert value "bad/date/format" to type "System.DateTime". Erro
r: "The string was not recognized as a valid DateTime. There is a unkn
own word starting at index 0."
At z:\09 - Error Handling and Debugging\Date-Traps.ps1:14 char:35
+ $date = [datetime] $dateString <<<<

Deshev_940-3C09.fm Page 162 Sunday, January 6, 2008 11:55 AM

C H AP TE R 9 ■ E R R O R H AN D L I N G AN D DE B U G G IN G 163

We handled the error and wrote out our diagnostic messages in the trap handler. The error
then got written to the console, and the script was terminated.

There is no limit to the number of trap statements that we can register, and this is how we
handle different errors. To see that in action, we can show how to cover different conversion and
arithmetic errors that can occur when working with numbers. Our script, Number-Traps.ps1, will
try to convert a string to a number; that will fail because the string does not even look close to
a number. The script will then perform an illegal division operation; it will attempt to divide by
zero. Both errors will be handled in separate traps. Here is our script code:

Write-Host "script begin"

[int] "not a number"
$denominator = 0
$result = 50 / $denominator

Write-Host "script end"

trap [System.Management.Automation.PSInvalidCastException]
{
 Write-Host "Error converting a string to a number!"
 continue
}

trap [System.DivideByZeroException]
{
 Write-Host "Attempted to divide by zero!"
 continue
}

This time, I have placed the error traps at the end of the script. I did that to make a point:
the location of the trap declarations does not matter. If we did not mind turning our script into
an unreadable mess, we could have even interspersed the traps among the regular code lines.
In addition, the order of defining our traps in the script code does not matter, because PowerShell
parses the script and sets up all traps before starting execution. Most code on the Internet uses
a convention of placing traps in the beginning of the code to which they apply, so sticking to
that convention is best. Finally, here is what our script produces when we run it:

PS> .\Number-Traps.ps1
script begin
Error converting a string to a number!
Attempted to divide by zero!
script end

Catching Unknown Errors or All Errors

We do not always know the type of error that will be raised, or we may want to set up a trap for all
errors that can be raised by a piece of code. To do that, we need to simply omit the type of the error
in our trap declaration. The code in our error handler has to use the $_ variable and the properties
we showed before to distinguish between errors. Let’s look at how to do that by rewriting our

Deshev_940-3C09.fm Page 163 Sunday, January 6, 2008 11:55 AM

164 CH AP T E R 9 ■ E R R O R H AN DL I N G A N D D E B U G G I N G

previous example using a generic trap handler. We save the code to Number-GenericTrap.ps1,
where we will use one trap handler that prints the FullyQualifiedErrorId, Exception, and
Exception.InnerException properties. Here is the code:

trap
{
 $exceptionType = $_.Exception.GetType()
 $innerExceptionType = "No inner exception"
 if ($_.Exception.InnerException)
 {
 $innerExceptionType = $_.Exception.InnerException.GetType()
 }

 Write-Host "FullyQualifiedErrorId: $($_.FullyQualifiedErrorId)"
 Write-Host "Exception: $exceptionType"
 Write-Host "InnerException: $innerExceptionType"

 continue
}

Write-Host "script begin"

[int] "not a number"
$denominator = 0
$result = 50 / $denominator

Write-Host "script end"

This is what happens when we run the script:

PS> .\Number-GenericTrap.ps1
script begin
FullyQualifiedErrorId: RuntimeException
Exception: System.Management.Automation.PSInvalidCastException
InnerException: System.FormatException
FullyQualifiedErrorId: RuntimeException
Exception: System.DivideByZeroException
InnerException: No inner exception
script end

We get both errors—the PSInvalidCastException and the DivideByZeroException—just as we
did in the previous versions of our script. Unfortunately, we do not get anything particularly mean-
ingful in our FullyQualifiedErrorId property; both objects have the generic RuntimeException
error ID, which is the error ID value for all exceptions coming out of the .NET runtime environ-
ment. To distinguish between the actual error types, we have to look at the Exception and
Exception.InnerException objects. You just have to be careful, as the InnerException property
for our exception is not guaranteed to contain a real object, as is the case with the
DivideByZeroException.

Deshev_940-3C09.fm Page 164 Sunday, January 6, 2008 11:55 AM

C H AP TE R 9 ■ E R R O R H AN D L I N G AN D DE B U G G IN G 165

Our generic trap handler has another good use. We can use it to get more information about
an unknown error that we are getting. Suppose that we do not want to catch and suppress all
errors, just one specific type of error. We do not know the exact type of the exception, and
therefore, we cannot set up a specific trap handler. The solution to this problem is to set up a
generic error trap, catch the error record object, and get the type of the object that the Exception
property contains. This is our exception type that we can now use to write a specific trap handler
and remove the generic one. The generic trap technique is very powerful—this is how I found
out about the PSInvalidCastException and DivideByZeroException types in the examples shown
so far.

Other programming languages provide constructs to mark a block of code and register
traps for specific errors that may be raised by that code. PowerShell does not allow that—error
traps are always registered for the current execution context. If we want to have a specific trap
that is valid for a small piece of code, we need to move that code to a separate script block or a
function. This way, we can set up nested traps: traps that take care of specific errors raised by
a small piece of code can be moved inside functions and script blocks, and the more general
handlers can be placed outside. If an error occurs inside a function, the shell will look for a trap
that has been registered. If it does not find one, it will look for a trap in the parent scope and so
on, until it reaches the script or global level. To demonstrate that, we will define a function,
Generate-DivideByZero, in a new script file, Nested-Traps.ps1 that will raise a System.
DivideByZeroExeption error. This function will contain an error trap that will log a message to
the console. In addition, the script generates a string-to-number conversion error that will be
caught by a global error trap. Here is our code:

trap
{
 $error = $_.Exception.GetType()
 Write-Host "Caught $error outside function"
 continue
}

function Generate-DivideByZero
{
 trap
 {
 $error = $_.Exception.GetType()
 Write-Host "Caught $error inside function"
 continue
 }

 $denominator = 0
 $result = 50 / $denominator
}

Write-Host "script begin"

Generate-DivideByZero
[int] "not a number"

Deshev_940-3C09.fm Page 165 Sunday, January 6, 2008 11:55 AM

166 CH AP T E R 9 ■ E R R O R H AN DL I N G A N D D E B U G G I N G

Write-Host "script end"

We should get two errors. Here is our script result:

PS> .\Nested-Traps.ps1
script begin
Caught System.DivideByZeroException inside function
Caught System.Management.Automation.PSInvalidCastException outside func
tion
script end

Low-level traps can pass the error to upper-level ones if needed. This incredibly useful
feature allows us to create error handler chains that do something in response to an error and
then pass the error up the chain for further processing. To pass up the error, we have to change
the continue statement to a break one. Here is our modified script code:

trap
{
 $error = $_.Exception.GetType()
 Write-Host "Caught $error outside function"
 continue
}

function Generate-DivideByZero
{
 trap
 {
 $error = $_.Exception.GetType()
 Write-Host "Caught $error inside function"
 break
 }

 $denominator = 0
 $result = 50 / $denominator
}

Write-Host "script begin"

Generate-DivideByZero
[int] "not a number"

Write-Host "script end"

The output changes to this:

PS> .\Nested-Traps.ps1
script begin
Caught System.DivideByZeroException inside function
Caught System.DivideByZeroException outside function
Caught System.Management.Automation.PSInvalidCastException outside function
script end

Deshev_940-3C09.fm Page 166 Sunday, January 6, 2008 11:55 AM

C H AP TE R 9 ■ E R R O R H AN D L I N G AN D DE B U G G IN G 167

The thing that is different than the previous time is that the System.DivideByZeroException
error bubbled up to the global trap after being handled by the local one.

Last, but not least, we will discuss a useful practice that we can resort to whenever we
publish a script for other people’s use. Nobody is perfect, and having a good way to gather
feedback about our script’s problems is a real time saver. If users have an easy way to package
an error report and send it back to us, we can spot and fix problems quickly. What can we do to
have a log of any error’s occurrences just as users have seen it on their machines? Even better—
what can we do to get additional information that is of little use to the user running our script?
We can get all this information by registering a global error trap in our script that will catch all
errors and save them to a known location so that users can just e-mail the error dump back
to us. Let’s now pretend that we have a script called Log-AllErrors.ps1 that tries to delete an
important file. If the operation generates a terminating error, we would like to save that infor-
mation and politely ask the user to send the file to us for further inspection. Here is the code:

trap
{
 $dumpFile = "error-dump.xml"
 $message = @"
A critical error occurred!
The error has been dumped to $dumpFile. Please include that file
in all error reports you send to scriptauthor@test.com
"@

 Write-Host $message -ForegroundColor Red
 $_ | Export-CliXml $dumpFile
 break
}

del veryimportantfile.txt -ErrorAction Stop

We use the Export-CliXml cmdlet to serialize the ErrorRecord object and turn it into an
XML file. This way, we automatically get all the information and do not have to choose which
error properties we need to save. In addition, we can create scripts that can process error reports
automatically if, God forbid, we are swamped with many bug reports from our users. This is
what we get when our script bombs at the console:

PS> .\Log-AllErrors.ps1
A critical error occurred!
The error has been dumped to error-dump.xml. Please include that file
in all error reports you send to scriptauthor@test.com
Remove-Item : Command execution stopped because the shell variable "Er
rorActionPreference" is set to Stop: Cannot find path 'z:\09 - Error H
andling and Debugging\veryimportantfile.txt' because it does not exist
.
At z:\09 - Error Handling and Debugging\Log-AllErrors.ps1:15 char:4

Deshev_940-3C09.fm Page 167 Sunday, January 6, 2008 11:55 AM

168 CH AP T E R 9 ■ E R R O R H AN DL I N G A N D D E B U G G I N G

+ del <<<< veryimportantfile.txt -ErrorAction Stop

Our generated XML file looks roughly like this (I have cut out large portions for the sake
of brevity):

<Objs Version="1.1"
 xmlns="http://schemas.microsoft.com/powershell/2004/04">
 <Obj RefId="RefId-0">
 <TN RefId="RefId-0">
 <T>System.Management.Automation.ErrorRecord</T>
 <T>System.Object</T>
 </TN>
 <MS>
 <Obj N="Exception" RefId="RefId-1">
 ...
 </Obj>
 ..
 </MS>
 </Obj>
</Objs>

The generated file is very readable, but it is best if we use the PowerShell tools to process
it. We can read it back into an object using the Import-CliXml cmdlet:

PS> $e = Import-Clixml error-dump.xml
PS> $e.FullyQualifiedErrorId
ActionPreferenceStop,Microsoft.PowerShell.Commands.RemoveItemCommand
PS> $e.InvocationInfo

MyCommand : Remove-Item
ScriptLineNumber : 15
OffsetInLine : 4
ScriptName : z:\09 - Error Handling and Debugging\Log-AllErrors.
 ps1
Line : del veryimportantfile.txt -ErrorAction Stop
PositionMessage :
 At z:\09 - Error Handling and Debugging\Log-AllErro
 rs.ps1:15 char:4
 + del <<<< veryimportantfile.txt -ErrorAction Stop
InvocationName : del
PipelineLength : 1
PipelinePosition : 1

We can get pretty detailed information, including the name of the script, the path it was
run from, and the specific line that caused the error. Now, that is what I call a good error report!

Deshev_940-3C09.fm Page 168 Sunday, January 6, 2008 11:55 AM

C H AP TE R 9 ■ E R R O R H AN D L I N G AN D DE B U G G IN G 169

Errors That Cannot Be Trapped

Some scripting languages are very liberal in their error-handling capabilities. Some even allow
scripters to trap and suppress syntax errors. For good or bad, PowerShell will not allow us to do
that. Syntax and parse errors are impossible to trap here. This feels like a good decision on the
language designers’ part, as there is little value in being able to suppress a syntax error. Almost
all the time, a syntax error is a critical problem that needs fixing instead of suppressing or ignoring.

Parse errors should be easy to spot, right? Most of the time, a parse error is a piece of illegal
code like an unrecognized statement an unbalanced set of braces, brackets, or quotation marks.
There is one place where PowerShell stretches that definition a bit that needs mentioning—
parse-time optimizations. The most common problem we can hit is literal expression evalua-
tion. PowerShell tries to evaluate expressions like 3 + 4 at parse time. This looks like a good
optimization strategy, as it simplifies processing later on, but it has the shortcoming of not
allowing us to trap any errors that occur during expression evaluation. Here is a sample script,
DivideByZero.ps1, that tries to trap a DivideByZeroException:

trap
{
 Write-Host "Caught $($_.Exception.GetType())"
}

Write-Host "Script start"
3 / 0

Running the code gives us the standard error message:

PS> .\DivideByZero.ps1
Attempted to divide by zero.
At z:\09 - Error Handling and Debugging\DivideByZero.ps1:6 char:4
+ 3 / <<<< 0

Our trap has not triggered at all! As a matter of fact, no code has executed at all—we would
have seen our “Script start” message if it had. PowerShell treats this situation as a parse error
and just bails out. Compare the situation when we get rid of the 0 literal and replace it with
something that gets evaluated to zero at runtime:

trap
{
 Write-Host "Caught $($_.Exception.GetType())"
 continue
}

Write-Host "Script start"
$zero = 0
3 / $zero

Here is the result:

PS> .\DivideByZero.ps1
Script start
Caught System.DivideByZeroException

Deshev_940-3C09.fm Page 169 Sunday, January 6, 2008 11:55 AM

170 CH AP T E R 9 ■ E R R O R H AN DL I N G A N D D E B U G G I N G

As you can see, this time our trap got triggered, and we were able to suppress the error. The
good news is that there are not many situations where you may hit a parse error that looks like
a runtime one. If you encounter one of them, you now know how to verify that this is the case—
add a simple Write-Host call in the beginning of the script. If it does not execute, you are dealing
with a parse-time error.

Capturing Nonterminating Errors
Nonterminating errors do not stop script execution and cannot be caught with an error trap.
To get hold of the ErrorRecord that has been generated for a nonterminating error, we have
several options: use the ErrorVariable parameter to store the error to a location that we can
later access; use error pipeline redirection; inspect the global $Error variable. We have already
looked at the ErrorVariable option: it works, but it is pretty clumsy, as it requires that we pass
an extra parameter to all cmdlets, and it still does not handle nonterminating errors raised by
other code.

Redirecting the error pipeline is not really an error-capturing mechanism. Most often, it is
used to simply suppress errors so that users do not see an error message at the console. Error
redirection is similar to output redirection. For example, here is how we redirect the output of
a command using the > operator:

PS> dir > directory-list.txt
PS> type directory-list.txt

 Directory: Microsoft.PowerShell.Core\FileSystem::z:\09 - Error Han
 dling and Debugging

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 10/21/2007 2:26 PM 464 Date-Traps.ps1
-a--- 10/22/2007 1:01 AM 788 directory-list.txt
…

To redirect the error pipeline, we need to use the 2> redirection operator. Here is how to do
that in deleting a file that does not exist:

PS> del nosuchfile.txt 2> error.txt
PS> type error.txt
Remove-Item : Cannot find path 'z:\09 - Error Handling and Debugging\n
osuchfile.txt' because it does not exist.
At line:1 char:4
+ del <<<< nosuchfile.txt 2> error.txt

Most often, we would redirect to the $null variable so that we do not need to create files on
disk:

PS> del nosuchfile.txt 2> $null
PS>

Deshev_940-3C09.fm Page 170 Sunday, January 6, 2008 11:55 AM

C H AP TE R 9 ■ E R R O R H AN D L I N G AN D DE B U G G IN G 171

The 2 in the 2> operator is interesting from an archeological point of view. Console appli-
cations, by convention, write their output to the so-called stdout stream (the standard output),
or the stream with an ID of 1. All error output is written to the stderr stream (the standard
error), which has an ID of 2. With shells like cmd.exe and bash, the 2> operator redirects output
written to stderr so that it is not shown to the screen but rather dumped in a file. The PowerShell
designers have kept that syntax for redirecting the error pipeline, even though that shell uses
object pipelines instead of text-based streams.

At the end of the day, the global $Error variable remains the only reliable way to get a
nonterminating error. That variable is a collection that literally contains all errors that have
occurred since the start of our shell session. Well, that should read “almost all errors”—the
number is limited by the $MaximumErrorCount variable value, which defaults to 256. The $Error
collection works a bit backward—it keeps the last error at the front, at $Error[0]. The error that
occurred before that is at $Error[1] and so on. This is how we can get our ErrorRecord for the
file delete operation that failed in the previous example:

PS> del nosuchfile.txt 2> $null
PS> $Error[0]
Remove-Item : Cannot find path 'z:\09 - Error Handling and Debugging\n
osuchfile.txt' because it does not exist.
At line:1 char:4
+ del <<<< nosuchfile.txt 2> $null

The $Error collection holds tremendous power. We can use it to build a logging facility
that can keep track of all errors that have occurred between two points in time. All we have to
do is to set a baseline by obtaining the number of errors stored in $Error and then get the number
of errors again after we are finished. Having that information, we can traverse the collection
and get the errors raised by the code executed between those two points. Let’s now do that in a
sample script, Log-NonTerminatingErrors.ps1, that will cause two errors and will suppress
those using different techniques. Here is the code:

trap
{
 continue
}

Write-Host "setting error baseline"
$initialErrorCount = $error.count

$denominator = 0
4/$denominator

del nosuchfile.txt 2> $null

$errorCount = $error.count - $initialErrorCount
Write-Host "Errors since baseline"
for ($i = $errorCount - 1; $i -ge 0; $i--)
{
 $error[$i]
}

Deshev_940-3C09.fm Page 171 Sunday, January 6, 2008 11:55 AM

172 CH AP T E R 9 ■ E R R O R H AN DL I N G A N D D E B U G G I N G

Dividing by zero is usually a terminating error, but we catch it with an error trap and just
continue execution. The del operation fails, but its error pipeline is redirected to $null. The
real error reporting mechanism obtains the initial error count. At the end, it gets the current
error count and starts going over the errors backward, so that it can print them out in the chrono-
logical order of their occurrence. Here is what happens when we run our script:

PS> .\Log-NonTerminatingErrors.ps1
setting error baseline
Errors since baseline
Attempted to divide by zero.
At z:\09 - Error Handling and Debugging\Log-NonTerminatingErrors.ps1:1
0 char:3
+ 4/$ <<<< denominator
Remove-Item : Cannot find path 'z:\09 - Error Handling and Debugging\n
osuchfile.txt' because it does not exist.
At z:\09 - Error Handling and Debugging\Log-NonTerminatingErrors.ps1:1
2 char:4
+ del <<<< nosuchfile.txt 2> $null

As we expected, we get the two errors and some details on what actually happened. This
can be extended using ideas from the global trap technique to set a baseline at the beginning
of the script and save all errors that have occurred during the entire script execution if a fatal
error occurs. The actual implementation should be a hybrid between the preceding example
and the global trap one, and I leave that as an exercise for you.

Raising Errors
Merely catching and handling errors would be too boring, because it would leave us on one
side of the fence. Having suffered the pain of being thrown all sorts of errors, we would now like
to be able to return the favor by throwing some errors ourselves. Jokes aside, too often, we have
to provide a function or a ready script that will not be used directly by users but will be run by
another script or program. Our script needs a way to indicate to its client code that it has encoun-
tered an abnormal condition and needs some action performed. “Abnormal condition” is a
pretty loosely defined term and can mean anything: bad input data, a problem with the envi-
ronment such as insufficient permissions to perform an operation, and so on. When we detect
a condition like those, the most logical thing to do is to raise an error to the calling code and let
it handle that. The caller can decide whether it should absorb the error and continue, change
the input and try something else, or give up entirely and terminate execution.

Raising Terminating Errors

Terminating errors or exceptions are to be raised when something, well, exceptional happens
and execution cannot continue. Suppose you are creating a script that knows how to process
text files of a specific format. Someone ignores the instructions though and passes a .ps1 file—
a PowerShell script instead of the requisite text file. There is no way to get the job done, so we
must throw an exception back. We can do that by using the throw statement.

To demonstrate how to throw errors, we will create a script, Function-Parameters.ps1,
that will define a function Find-TextFile, which in turn requires a file name as a parameter.

Deshev_940-3C09.fm Page 172 Sunday, January 6, 2008 11:55 AM

C H AP TE R 9 ■ E R R O R H AN D L I N G AN D DE B U G G IN G 173

The function will throw an error if it receives a name that does not have the .txt file extension.
Here is the code:

function Find-TextFile($name)
{
 if ($name -notlike "*.txt")
 {
 throw "Find-TextFile: Expecting *.txt files only"
 }

 return Get-Item $name
}

Find-TextFile "Function-Parameters.ps1"

This is what happens when we run the script:

PS> .\Function-Parameters.ps1
Find-TextFile: Expecting *.txt files only
At z:\09 - Error Handling and Debugging\Function-Parameters.ps1:5 char
:14
+ throw <<<< "Find-TextFile: Expecting *.txt files only"

PowerShell is a lot different than the .NET programming languages like C# and VB.NET
with regard to throwing exceptions. The .NET languages require that the object you throw be
an object of a type that inherits from System.Exception. PowerShell does not have that restriction—
in our example, we throw a simple string. In actuality, PowerShell too has that inheritance
restriction, but it wraps the string in a RuntimeException object for us. Let’s catch that excep-
tion and see for ourselves. After adding an error trap, the code looks like this:

trap
{
 Write-Host "$($_.Exception.GetType())"
 continue
}

function Find-TextFile($name)
{
 if ($name -notlike "*.txt")
 {
 throw "Find-TextFile: Expecting *.txt files only"
 }

 return Get-Item $name
}

Find-TextFile "Function-Parameters.ps1"

Deshev_940-3C09.fm Page 173 Sunday, January 6, 2008 11:55 AM

174 CH AP T E R 9 ■ E R R O R H AN DL I N G A N D D E B U G G I N G

After running it, we get this:

PS> .\Function-Parameters.ps1
System.Management.Automation.RuntimeException

Throwing all types of objects at our clients is convenient for us but not very convenient for
the client code. For one thing, it is impossible to write a specific error trap, and we have to resort
to heuristics to identify one error from another. Life would be a mess if everyone threw only
strings as exceptions. There has to be a better way!

The way out of this mess is to create an exception object and throw that. Let’s rework our
code so that it throws a System.ArgumentException instead:

trap [System.ArgumentException]
{
 Write-Host "$($_.Exception.Message)"
 continue
}

function Find-TextFile($name)
{
 if ($name -notlike "*.txt")
 {
 $message = "Find-TextFile: Expecting *.txt files only"
 throw (New-Object System.ArgumentException -arg $message)
 }

 return Get-Item $name
}

Find-TextFile "Function-Parameters.ps1"

Note that we are now using the New-Object cmdlet to create a .NET System.ArgumentException
object and pass the error message as a constructor parameter. This allows us to write a more
specific error trap that will catch only argument exceptions. Here is the result that we get after
running our script:

PS> .\Function-Parameters.ps1
Find-TextFile: Expecting *.txt files only

In Chapter 5, I showed you how to use the throw statement inside an expression that is
specified as a function parameter’s default value to raise an error if the parameter has not been
supplied. That clever hack to implement mandatory parameters can be further extended with
standard .NET exception objects. To continue our example, we can add a check that the $name
parameter is not $null. Here is the new version of our script:

trap [System.ArgumentException]
{
 Write-Host "$($_.Exception.Message)"
 continue
}

Deshev_940-3C09.fm Page 174 Sunday, January 6, 2008 11:55 AM

C H AP TE R 9 ■ E R R O R H AN D L I N G AN D DE B U G G IN G 175

function Find-TextFile($name = `
 $(throw New-Object System.ArgumentNullException -arg "name"))
{
 if ($name -notlike "*.txt")
 {
 $message = "Find-TextFile: Expecting *.txt files only"
 throw (New-Object System.ArgumentException -arg $message)
 }

 return Get-Item $name
}

Find-TextFile "Function-Parameters.ps1"
Find-TextFile

In the new function definition, we use a somewhat convoluted parameter default value
expression that creates a new System.ArgumentNullException for the $name argument and throws it
if the argument has not been supplied. Here, we enjoy the benefits of object-oriented program-
ming to the fullest—the ArgumentNullException type in .NET inherits from the ArgumentException
one. That means that all ArgumentNullException objects are ArgumentException ones too. That,
in turn, means that traps set up for ArgumentException errors catch all errors of derived types.
Here is what the script output looks like:

PS> .\Function-Parameters.ps1
Find-TextFile: Expecting *.txt files only
Value cannot be null.
Parameter name: name

Note that we get two different errors for the two invocations. The use of
ArgumentNullException shines with a nicely formatted error message about a missing param-
eter. Use that exception for missing parameters; it will provide the best user experience, and it
will even contain localized error messages for non-English Windows systems.

Raising Nonterminating Errors

Not all errors that we encounter are fatal for script execution. We may be able to continue with
our logic, but we may still want to issue a mild warning to the user or to the client code. The
information in that warning can help the client code make an intelligent decision on how to
continue. Even if the client code ignores it, the information in the nonterminating error message is
likely to reach the user, and that can help him or her in diagnosing and fixing a problem.

So, how do we generate a nonterminating error? There is no support built into the
PowerShell language to do that, but fortunately, we have the Write-Error cmdlet. That
cmdlet can take a message string, an exception, or an ErrorRecord object and pass it down
the error pipeline. To see that in action, let’s go back to finding text files. Our new script,
Function-ParametersNonTerminating.ps1, will define a function Find-TextFile that will
return the item for the given path and generate a nonterminating error if the file does not exist.
Here is the first version of the script:

Deshev_940-3C09.fm Page 175 Sunday, January 6, 2008 11:55 AM

176 CH AP T E R 9 ■ E R R O R H AN DL I N G A N D D E B U G G I N G

function Find-TextFile($name)
{
 if (!(Test-Path $name))
 {
 Write-Error -Message "$name does not exist"
 return $null
 }
 else
 {
 return Get-Item $name
 }
}

Write-Host "Script start"
Find-TextFile "nosuchfile.txt"
Write-Host "Script end"

Invoking the script prints the error in red but does not stop execution when the error occurs:

PS> .\Function-ParametersNonTerminating.ps1
Script start
Find-TextFile : nosuchfile.txt does not exist
At z:\09 - Error Handling and Debugging\Function-ParametersNonTerminat
ing.ps1:15 char:14
+ Find-TextFile <<<< "nosuchfile.txt"
Script end

Since Write-Error writes to the error pipeline, the client code can easily suppress the error
by redirecting that pipeline to $null:

PS> .\Function-ParametersNonTerminating.ps1 2> $null
Script start
Script end

The script looks perfect, but once we start poking around, we find some things that can
easily be improved. The most annoying thing is that when we use the Message parameter, we
always get the same stock exception type, WriteErrorException:

PS> .\Function-ParametersNonTerminating.ps1
Script start
Find-TextFile : nosuchfile.txt does not exist
At z:\09 - Error Handling and Debugging\Function-ParametersNonTerminat
ing.ps1:15 char:14
+ Find-TextFile <<<< "nosuchfile.txt"
Script end
PS> $Error[0].Exception.GetType().FullName
Microsoft.PowerShell.Commands.WriteErrorException

Again, we would have to heuristically inspect the string contents of error messages to
detect what really happened. We would not want to do that to our client code, right? The best

Deshev_940-3C09.fm Page 176 Sunday, January 6, 2008 11:55 AM

C H AP TE R 9 ■ E R R O R H AN D L I N G AN D DE B U G G IN G 177

thing to do here is to create a System.IO.FileNotFoundException object, initialize it with the
correct error message and file name, and pass it to Write-Error. Here is how to modify our code
to make it do that:

function Find-TextFile($name)
{
 if (!(Test-Path $name))
 {
 $errorMessage = "$name does not exist"
 $exception = New-Object System.IO.FileNotFoundException `
 -arg $message,$name
 Write-Error -Exception $exception
 return $null
 }
 else
 {
 return Get-Item $name
 }
}

Write-Host "Script start"
Find-TextFile "nosuchfile.txt"
Write-Host "Script end"

The code is not much different, other than the actual exception object creation line and
the new method of calling Write-Error through its Exception parameter. This is what happens
when we run the script and inspect the last error:

PS> .\Function-ParametersNonTerminating.ps1
Script start
Find-TextFile :
At z:\09 - Error Handling and Debugging\Function-ParametersNonTerminat
ing.ps1:18 char:14
+ Find-TextFile <<<< "nosuchfile.txt"
Script end
PS> $Error[0].Exception.GetType().FullName
System.IO.FileNotFoundException

Note that the text message that got written to the console has not changed at all. What
really matters has changed, though—our exception is now of the correct type, and that makes
the client code’s task of finding out what type of error occurred a whole lot easier.

Debugging Your Code
Debugging is the black art of finding and eliminating errors in computer programs. Logic errors
have long been referred to as bugs, and popular legend has it that the first bug was a real moth
stuck between the contacts of a relay in the U.S. Navy’s Harvard Mark II computer. The fix back
then was simple; the bug was extracted using tweezers.

Deshev_940-3C09.fm Page 177 Sunday, January 6, 2008 11:55 AM

178 CH AP T E R 9 ■ E R R O R H AN DL I N G A N D D E B U G G I N G

Most programming languages and environments ship with a fully featured debugger system,
a means to execute a program step-by-step and to inspect the intermediate results of its execu-
tion. For better or for worse, PowerShell does not contain a script debugger, and we have to
resort to other techniques to eliminate errors in our programs. Luckily, using some ingenious
tricks, we can get pretty close to tracing our program execution, temporarily suspending execution
flow and examining the state of the program.

As with any complex task, we do not need super-fancy tools to debug our scripts. The most
important part of tackling a misbehaving program is to be able to divide the problem into small
subproblems and conquer them all one by one. Just as prophylaxis is the best cure in medicine,
with debugging, the best practice is bug prevention. The key to squashing any bug is to struc-
ture your script in small blocks that can be tested in isolation. This way, you are guaranteed to
encounter only tiny bugs—the kind that are easy to kill. Whenever you feel that you do not
understand what is really going on in your program, first turn to Chapters 4, 5, and 8 to review
the techniques that you can employ to simplify your program.

Print Debugging
Print debugging is the most primitive and quite often the most effective form of debugging.
The idea is simple—we inspect the state of the program at a specific point in the execution flow
by injecting code that prints information about the system. The real power of this technique
lies in the fact that we have the full power of the programming language to get to any part of the
system and print information about it: script variables, environment variables, file contents,
registry keys, and so on. That power can get dangerous; it is too easy to get carried away and
introduce a logic error in a routine that is supposed to just print information, and that alone is
enough to poison our entire debugging session. The key to using this technique effectively is to
keep the injected print statements simple.

The most convenient cmdlet that we can use to print debug strings is Write-Host. It does
not output objects or strings to the object pipeline but writes them directly to the console. We
have been using that cmdlet to provide diagnostic messages that do not interfere with the current
pipeline throughout this entire book. In addition to being able to print out all sorts of objects
and collections, Write-Host can use color to make its output even more beautiful. We can use
that to color code our messages and provide additional cues to the user by, say, coloring diagnostic
messages in green, warnings in yellow, and errors in red. We can do that using the BackgroundColor
and ForegroundColor parameters. Here are the possible values:

PS> $helpTopic = (Get-Help Write-Host -Parameter ForegroundColor)
PS> $helpTopic.possibleValues.possibleValue | select Value

value

Black
DarkBlue
DarkGreen

Deshev_940-3C09.fm Page 178 Sunday, January 6, 2008 11:55 AM

C H AP TE R 9 ■ E R R O R H AN D L I N G AN D DE B U G G IN G 179

DarkCyan
DarkRed
DarkMagenta
DarkYellow
Gray
DarkGray
Blue
Green
Cyan
Red
Magenta
Yellow
White

The possible BackgroundColor values are the same. In the preceding command, we are
using the fact that even help topics in PowerShell are objects, and we can manipulate them
with standard cmdlets. To learn more about similar techniques for obtaining help for a command,
please see Chapter 13.

Let’s now use some color to create a small script called Print-Debug.ps1 that will count
the number of characters in a text file. We will define the Count-Characters function and use
Write-Host inside to write diagnostic messages. Here is the code:

function Count-Characters($file)
{
 Write-Host "Opening $file" -Background White -Foreground DarkGreen
 $content = ""
 if (Test-Path $file)
 {
 $content = Get-Content $file
 }

 Write-Host "File contains $($content.Length) characters" `
 -Background White -Foreground DarkGreen
}

Count-Characters Print-Debug.ps1
Count-Characters nosuchfile.txt

Our function defaults to an empty content string. It checks if the file exists using the Test-Path
cmdlet, and if that is the case, it reads the file contents using the Get-Content cmdlet. The function
uses dark green text on a white background to write two diagnostic messages: one before it
opens the file and another when it finishes reading the file contents. Figure 9-1 shows a screen-
shot of the console window.

Deshev_940-3C09.fm Page 179 Sunday, January 6, 2008 11:55 AM

180 CH AP T E R 9 ■ E R R O R H AN DL I N G A N D D E B U G G I N G

Figure 9-1. Here’s the output generated by the Write-Host cmdlet; onscreen, the text is dark green
on a white background.

Generating Verbose Output

Quite often, we need diagnostic messages that the user does not need to see. We may require
quite verbose output when we are developing the script or troubleshooting a problem. That
output has no value for the user; on the contrary, it clutters the console screen and can be
harmful. We need a way to generate diagnostic messages that we can easily turn on and off.
PowerShell supports that need quite nicely with its diagnostic cmdlets: Write-Verbose,
Write-Warning, and Write-Debug. Here is what happens when we invoke Write-Verbose to write a
message that should be seen only when the user has explicitly specified so:

PS> Write-Verbose "This is a verbose message"
PS>

That is right! There is no output at all. We need to specify that we are interested in verbose
output first. We can do that by providing the Verbose common parameter:

PS> Write-Verbose "This is a verbose message" -Verbose
VERBOSE: This is a verbose message

The Verbose parameter still does not allow us to switch verbose output generation on and
off easily. That is why PowerShell provides another mechanism to control that—the global
$VerbosePreference variable. That variable contains an ActionPreference object, the same
object that we provided as the ErrorAction common parameter in the beginning of this chapter.
The default value for $VerbosePreference is SilentlyContinue, and that is why we do not see
any output. To make our output visible, we need to set it to Continue:

PS> $VerbosePreference = "Continue"
PS> Write-Verbose "This is a verbose message"
VERBOSE: This is a verbose message

We can also set $VerbosePreference to Stop if we want the shell to generate a stop error
that will prevent the rest of the code from executing. The Inquire option is supported too; if
turned on, the shell will ask the user what to do next:

Deshev_940-3C09.fm Page 180 Sunday, January 6, 2008 11:55 AM

C H AP TE R 9 ■ E R R O R H AN D L I N G AN D DE B U G G IN G 181

PS> $VerbosePreference = "Inquire"
PS> Write-Verbose "This is a verbose message"
VERBOSE: This is a verbose message

Confirm
Continue with this operation?
[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help
(default is "Y"):

Probably the best use for Write-Verbose is to generate messages that can be seen by advanced
users only at times when they need to troubleshoot a problem. That is why the most useful
values for $VerbosePreference are the ones that turn output on and off or Continue and
SilentlyContinue.

We can now modify our Count-Characters function in such a way so that it generates
verbose messages right after it is called and immediately before it finishes execution. Here is
what our script file looks like now:

function Count-Characters($file)
{
 $functionName = $MyInvocation.MyCommand.Name
 Write-Verbose "Entering $functionName"

 Write-Host "Opening $file" -Background White -Foreground DarkGreen
 $content = ""
 if (Test-Path $file)
 {
 $content = Get-Content $file
 }

 Write-Host "File contains $($content.Length) characters" `
 -Background White -Foreground DarkGreen

 Write-Verbose "Leaving $functionName"
}

Count-Characters Print-Debug.ps1
Count-Characters nosuchfile.txt

We get the function name from the $MyInvocation special variable to avoid hard-coding
the name in our script. This way, we can copy and paste that code to different functions. Here
is the output our script produces with verbose output turned off and on:

PS> $VerbosePreference = "SilentlyContinue"
PS> .\Print-Debug.ps1
Opening Print-Debug.ps1
File contains 58 characters
Opening nosuchfile.txt
File contains 0 characters

Deshev_940-3C09.fm Page 181 Sunday, January 6, 2008 11:55 AM

182 CH AP T E R 9 ■ E R R O R H AN DL I N G A N D D E B U G G I N G

PS> $VerbosePreference = "Continue"
PS> .\Print-Debug.ps1
VERBOSE: Entering Count-Characters
Opening Print-Debug.ps1
File contains 37 characters
VERBOSE: Leaving Count-Characters
VERBOSE: Entering Count-Characters
Opening nosuchfile.txt
File contains 0 characters
VERBOSE: Leaving Count-Characters

Diagnostic messages are good, but we cannot afford to paste that ugly code in all
our functions. We need a more elegant solution here. We can define a function called
Instrument-Function that will use a script block to wrap the original function body.
Instrument-Function will contain the diagnostics code; it will generate the verbose output
before and after calling the original function body, and verbose messages will no longer litter
our original code. Here is the modified code:

function Instrument-Function($body)
{
 $parentInvocation = Get-Variable MyInvocation -scope 1 -ValueOnly
 $functionName = $parentInvocation.MyCommand.Name

 Write-Verbose "Entering $functionName"
 &$body
 Write-Verbose "Leaving $functionName"
}

function Count-Characters($file)
{
 Instrument-Function {
 Write-Host "Opening $file" `
 -Background White -Foreground DarkGreen
 $content = ""
 if (Test-Path $file)
 {
 $content = Get-Content $file
 }

 Write-Host "File contains $($content.Length) characters" `
 -Background White -Foreground DarkGreen
 }
}

Count-Characters Print-Debug.ps1
Count-Characters nosuchfile.txt

Deshev_940-3C09.fm Page 182 Sunday, January 6, 2008 11:55 AM

C H AP TE R 9 ■ E R R O R H AN D L I N G AN D DE B U G G IN G 183

As you can see, Count-Character’s definition looks almost the same as the original one.
The only difference is that the original code is wrapped in a script block and passed to
Instrument-Function. Instrument-Function needs the name of the function that called it to
generate its diagnostic output. It does that by going the parent scope and getting the parent
invocation info using the Get-Variable cmdlet. The code instrumentation approach to gener-
ating verbose output is so elegant that you can use it in all your functions. There is one small
caveat: the new script block will not contain the original automatic $Args variable. That type of
instrumentation will not work with unnamed function parameters.

Generating Debug Output

“Debug output” is just a fancy term for diagnostic messages generated by our script. The differ-
ence from verbose output is that debugging messages are only useful to the script author. Even
advanced users able to troubleshoot problems on their own are unlikely to benefit from such
messages, as debug output typically contains internal error messages, intermediate variable
contents, and other information that can help the script author easily spot bugs and all other
types of anomalies.

We can generate debug messages using the Write-Debug cmdlet. Here is our first message:

PS> Write-Debug "This is a debug message"
PS>

Oops! Debug output, just like verbose output, is disabled by default. To see something, we
need to pass the Debug parameter:

PS> Write-Debug "This is a debug message" -Debug
DEBUG: This is a debug message

Confirm
Continue with this operation?
[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help
(default is "Y"):

The shell sees that we have a debug message coming, outputs it, and prompts us for action.
Debug messages are controlled by a global shell variable too—$DebugPreference. Just like
$VerbosePreference, this variable contains an ActionPreference object. Again, the default
value is SilentlyContinue. We got the prompt in the previous example, because Write-Debug
switches to Inquire when given the Debug switch. We can change the action preference to
Continue to get a simple message:

PS> $DebugPreference = "Continue"
PS> Write-Debug "This is a debug message"
DEBUG: This is a debug message

Now that we have our Instrument-Function in place, we can extend it so that it traps all
errors that have been raised by the function body. When we get an error, we will write a debug
message and let it bubble up to other traps. To see that in action, we have to modify the
Count-Characters function and make it throw an exception if the file does not exist. This is how
our modified script looks:

Deshev_940-3C09.fm Page 183 Sunday, January 6, 2008 11:55 AM

184 CH AP T E R 9 ■ E R R O R H AN DL I N G A N D D E B U G G I N G

function Instrument-Function($body)
{
 $parentInvocation = Get-Variable MyInvocation -scope 1 -ValueOnly
 $functionName = $parentInvocation.MyCommand.Name

 trap
 {
 Write-Debug "$functionName raised an error"
 }

 Write-Verbose "Entering $functionName"
 &$body
 Write-Verbose "Leaving $functionName"
}

function Count-Characters($file)
{
 Instrument-Function {
 Write-Host "Opening $file" `
 -Background White -Foreground DarkGreen
 $content = ""
 if (Test-Path $file)
 {
 $content = Get-Content $file
 }
 else
 {
 throw "No such file"
 }

 Write-Host "File contains $($content.Length) characters" `
 -Background White -Foreground DarkGreen
 }
}

Count-Characters Print-Debug.ps1
Count-Characters nosuchfile.txt

We have added a trap handler to Instrument-Function and an else clause in Count-Characters.
Running the script with debug and verbose output enabled looks like this:

PS> $VerbosePreference = "Continue"
PS> $DebugPreference = "Continue"
PS> .\Print-Debug.ps1
VERBOSE: Entering Count-Characters
Opening Print-Debug.ps1
File contains 37 characters
VERBOSE: Leaving Count-Characters

Deshev_940-3C09.fm Page 184 Sunday, January 6, 2008 11:55 AM

C H AP TE R 9 ■ E R R O R H AN D L I N G AN D DE B U G G IN G 185

VERBOSE: Entering Count-Characters
Opening nosuchfile.txt
DEBUG: Count-Characters raised an error
No such file
At Z:\09 - Error Handling and Debugging\Print-Debug.ps1:28 char:18
+ throw <<<< "No such file"
VERBOSE: Leaving Count-Characters

We can clearly see that the second function invocation entered the function but never left
it properly. That happened because the code triggered an exception. We can go further and set
$DebugPreference to Inquire so that we can suspend script execution and look around. This is
useful to get additional information about the error. Here is how to do that:

PS> $DebugPreference = "Inquire"
PS> .\Print-Debug.ps1
VERBOSE: Entering Count-Characters
Opening Print-Debug.ps1
File contains 37 characters
VERBOSE: Leaving Count-Characters
VERBOSE: Entering Count-Characters
Opening nosuchfile.txt
DEBUG: Count-Characters raised an error

Confirm
Continue with this operation?
[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help
(default is "Y"):S
PS> $file
nosuchfile.txt
PS> exit

Confirm
Continue with this operation?
[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help
(default is "Y"):Y
No such file
At Z:\09 - Error Handling and Debugging\Print-Debug.ps1:28 char:18
+ throw <<<< "No such file"
VERBOSE: Leaving Count-Characters

We entered a fully functional command prompt and were able to get the value of the $file
parameter. This showed us that the second invocation—the one trying to open nosuchfile.txt—
actually caused the exception. We exited the nested command prompt with the exit command
and returned to our Write-Debug inquiry. This is a very useful technique, and you can use it
similar to a debugger breakpoint; your script execution is suspended, and you can look around
and inspect variables’ contents.

Deshev_940-3C09.fm Page 185 Sunday, January 6, 2008 11:55 AM

186 CH AP T E R 9 ■ E R R O R H AN DL I N G A N D D E B U G G I N G

Generating Warnings

Warnings are the third kind of diagnostic output that we will discuss. They are typically used to
output noncritical messages that users should see. Warning messages usually mean that some-
thing went wrong, but the script probably knows how to handle the situation. The information
is presented to the user, so that he or she knows what really happened and can react accord-
ingly if the script fails to handle things and crashes later.

We can output warning messages with the Write-Warning cmdlet. Here is how:

PS> Write-Warning "This is a warning"
WARNING: This is a warning

Warnings get output to the console by default. They too can be controlled via a global
variable—$WarningPreference. That variable defaults to Continue, and we can change it to
suppress warnings by setting $WarningPreference to SilentlyContinue. We can also ask the
user for action by setting the variable to Inquire and possibly allow him or her to suspend
execution and look around from a nested prompt.

That exception we threw in our Count-Characters function does not feel quite right. A value of
zero looks a good default for nonexistent files, and we can change the exception to a warning.
Here is the new version of our script:

function Instrument-Function($body)
{
 $parentInvocation = Get-Variable MyInvocation -scope 1 -ValueOnly
 $functionName = $parentInvocation.MyCommand.Name

 trap
 {
 Write-Debug "$functionName raised an error"
 }

 Write-Verbose "Entering $functionName"
 &$body
 Write-Verbose "Leaving $functionName"
}

function Count-Characters($file)
{
 Instrument-Function {
 Write-Host "Opening $file" `
 -Background White -Foreground DarkGreen
 $content = ""
 if (Test-Path $file)
 {
 $content = Get-Content $file
 }

Deshev_940-3C09.fm Page 186 Sunday, January 6, 2008 11:55 AM

C H AP TE R 9 ■ E R R O R H AN D L I N G AN D DE B U G G IN G 187

 else
 {
 Write-Warning "$file does not exist."
 }

 Write-Host "File contains $($content.Length) characters" `
 -Background White -Foreground DarkGreen
 }
}

Count-Characters Print-Debug.ps1
Count-Characters nosuchfile.txt

Running the script twice: with verbose output turned on and then off, we get this:

PS> $VerbosePreference = "Continue"
PS> .\Print-Debug.ps1
VERBOSE: Entering Count-Characters
Opening Print-Debug.ps1
File contains 37 characters
VERBOSE: Leaving Count-Characters
VERBOSE: Entering Count-Characters
Opening nosuchfile.txt
WARNING: nosuchfile.txt does not exist.
File contains 0 characters
VERBOSE: Leaving Count-Characters
PS>
PS> $VerbosePreference = "SilentlyContinue"
PS> .\Print-Debug.ps1
Opening Print-Debug.ps1
File contains 37 characters
Opening nosuchfile.txt
WARNING: nosuchfile.txt does not exist.
File contains 0 characters

We are now confident that users will get a reasonable default when their file does not exist,
but they will be notified of what really happened so that they do not rely on the file’s existence
later on. In addition, they can suppress the warning if they are not interested in it.

Controlling Error Output

Write-Verbose, Write-Debug, and Write-Warning all work in pretty much the same way. We can
say the same for Write-Error too. It is not an output cmdlet like the others, but it is similar
to the others in the sense that its output can be controlled via a well known global variable,
$ErrorActionPreference. Now, you know yet another way to suppress error messages:

PS> $ErrorActionPreference = "SilentlyContinue"
PS> Write-Error "An error occurred"
PS>

Deshev_940-3C09.fm Page 187 Sunday, January 6, 2008 11:55 AM

188 CH AP T E R 9 ■ E R R O R H AN DL I N G A N D D E B U G G I N G

Alternatively, we can set that variable to Inquire to conveniently break into a nested
prompt whenever an unexpected error occurs.

Stepping Through Scripts and Breaking Execution
Stepping through a script is a special mode of execution that executes a script line by line and
asks before continuing with the next line. It might seem boring at first, but it is an excellent way
to trace what a script really does. Until now, you have seen ways to ask for user input before
continuing execution for a single command originated from cmdlets like Write-Debug. We can
do that for every statement by using the Set-PSDebug cmdlet. Let’s go back to the simple version
of our Count-Characters function, saved in the Count-Characters.ps1 script file. Here is the
code again:

function Count-Characters($file)
{
 $content = ""
 if (Test-Path $file)
 {
 $content = Get-Content $file
 }

 Write-Host "File contains $($content.Length) characters"
}

Count-Characters Print-Debug.ps1
Count-Characters nosuchfile.txt

To step through the script one statement at a time, we need to call Set-PSDebug with the
Step parameter:

PS> Set-PSDebug -step
PS> .\Count-Characters.ps1

Continue with this operation?
 1+ .\Count-Characters.ps1
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):Y
DEBUG: 1+ .\Count-Characters.ps1

Continue with this operation?
 1+ function Count-Characters($file)
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):Y

We can suspend execution anytime and find ourselves in a nested prompt that we can use
to get additional information about the environment. Again, when we are done, we can exit the
prompt with the exit command. Let’s continue our script stepping session:

Deshev_940-3C09.fm Page 188 Sunday, January 6, 2008 11:55 AM

C H AP TE R 9 ■ E R R O R H AN D L I N G AN D DE B U G G IN G 189

DEBUG: 12+ Count-Characters Print-Debug.ps1

Continue with this operation?
 3+ $content = ""
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):S
PS> $file
Print-Debug.ps1
PS> exit

Continue with this operation?
 3+ $content = ""
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):

To restore the normal shell operating mode, either restart your shell session or invoke
Set-PSDebug passing the Off parameter:

PS> Set-PSDebug -Off

Continue with this operation?
 1+ Set-PSDebug -off
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):
DEBUG: 1+ Set-PSDebug -Off

Simulating Breakpoints

Stepping through a large script can easily bore you to death—that is why modern debuggers
allow you to set a breakpoint at a specific location. You can then execute the code, and it will
run normally until it reaches that location. At that time, execution will be suspended, allowing
you to inspect variable contents, step through the rest of the script, and much more. PowerShell
does not support breakpoints, but we can at least simulate setting breakpoints by suspending
script execution and starting up a nested prompt that will allow us to read variable contents
and even modify the environment. The technique was first outlined on the PowerShell team
blog, and the idea is to use the EnterNestedPrompt method that the host object must imple-
ment. This allows us to write a function that will suspend execution when it is called. Let’s add
that method to our Count-Characters.ps1 script and call it when the file we are trying to open
does not exist. Here is the code:

function Start-Debug
{
 Write-Host "Breakpoing hit!" -ForegroundColor Red
 function prompt
 {
 "DEBUG> "
 }
 $host.EnterNestedPrompt()
}

Deshev_940-3C09.fm Page 189 Sunday, January 6, 2008 11:55 AM

190 CH AP T E R 9 ■ E R R O R H AN DL I N G A N D D E B U G G I N G

function Count-Characters($file)
{
 $content = ""
 if (Test-Path $file)
 {
 $content = Get-Content $file
 }
 else
 {
 Start-Debug
 }

 Write-Host "File contains $($content.Length) characters"
}

Count-Characters Print-Debug.ps1
Count-Characters nosuchfile.txt

We write a notification in red, so that it catches our attention, and change the prompt to
make it immediately visible that we are in a debugging nested prompt before actually entering
the prompt. This is how we can find out the name of the file that does not really exist:

PS> .\Count-Characters.ps1
File contains 37 characters
Breakpoing hit!
DEBUG> $file
nosuchfile.txt
DEBUG> exit
File contains 0 characters

Tracing Script Execution Details
One of PowerShell’s greatest strengths with regard to error diagnostics and resolution is its
support for tracing command execution. All operations are built with the idea in mind that a
person—whether a script developer, a cmdlet developer, or an advanced user—should be able
to get a trace log with the detailed operations that the shell itself or one of its cmdlets is performing.
We will look into two types of tracing here: intrinsic shell operations, like setting variables and
calling functions, and specific operations for which we can request tracing.

Tracing Intrinsic Shell Operations

Let’s take a look at the simple task of logging a script’s execution to determine the order in
which operations were called: we need information on what operations were performed and in
what order. To get that, we need to switch the shell debug tracing, which we do by calling the
Set-PSDebug cmdlet and passing the Trace parameter. PowerShell offers two levels of tracing, 1 and
2, with the latter generating more verbose output. Let’s create a small script, Trace-Command.ps1,
that defines a function Calculate that divides two numbers. Here is the code:

Deshev_940-3C09.fm Page 190 Sunday, January 6, 2008 11:55 AM

C H AP TE R 9 ■ E R R O R H AN D L I N G AN D DE B U G G IN G 191

function Calculate($a, $b)
{
 $result = $a / $b
 return $result
}

Calculate 1 2

To get the order in which the script lines were executed, we need to switch to trace level 1:

PS> Set-PSDebug -Trace 1
PS> .\Trace-Execution.ps1
DEBUG: 1+ .\Trace-Execution.ps1
DEBUG: 1+ function Calculate($a, $b)
DEBUG: 7+ Calculate 1 2
DEBUG: 3+ $result = $a / $b
DEBUG: 4+ return $result
0.5

You can see that line 1 was executed first, and it defined the Calculate function. Later, line 7
invoked that function. After that, execution went through the function body: lines 3 and 4. Let’s
see what happens when we enable trace level 2:

PS> Set-PSDebug -Trace 2
DEBUG: 1+ Set-PSDebug -Trace 2
PS> .\Trace-Execution.ps1
DEBUG: 1+ .\Trace-Execution.ps1
DEBUG: ! CALL script 'Trace-Execution.ps1'
DEBUG: 1+ function Calculate($a, $b)
DEBUG: 7+ Calculate 1 2
DEBUG: ! CALL function 'Calculate' (defined in file 'Z:\09 -
Error Handling and Debugging\Trace-Execution.ps1')
DEBUG: 3+ $result = $a / $b
DEBUG: ! SET $result = '0.5'.
DEBUG: 4+ return $result
0.5

In addition to the line numbers and the execution log, we get information about scripts
and functions that have been called. We get a log for variable assignment; that is what the ! SET
line means. Note that we get the computed value that resulted from evaluating the expression,
which can provide invaluable information when debugging complex expressions. The function
call log is very useful, as it shows the script that defined that function. We can use that informa-
tion to troubleshoot function name collisions and unwanted function overwrites.

Trace level 2 provides a lot of internal information that we can use to learn how cmdlets
work. Here is how we can get information about what Get-ChildItem does when listing a direc-
tory entry:

Deshev_940-3C09.fm Page 191 Sunday, January 6, 2008 11:55 AM

192 CH AP T E R 9 ■ E R R O R H AN DL I N G A N D D E B U G G I N G

PS> Set-PSDebug -Trace 2
DEBUG: 1+ Set-PSDebug -Trace 2
PS> Get-ChildItem Trace-Execution.ps1
DEBUG: 1+ Get-ChildItem Trace-Execution.ps1
DEBUG: 1+ $_.PSParentPath
DEBUG: 1+ $catr = "";
DEBUG: ! SET $catr = ''.
DEBUG: 2+ if ($this.Attributes -band 16) {
$catr += "d" } else { $catr += "-" } ;
DEBUG: 2+ if ($this.Attributes -band 16) {
$catr += "d" } else { $catr += "-" } ;
DEBUG: ! SET $catr = '-'.
DEBUG: 3+ if ($this.Attributes -band 32) {
$catr += "a" } else { $catr += "-" } ;
DEBUG: 3+ if ($this.Attributes -band 32) {
$catr += "a" } else { $catr += "-" } ;
DEBUG: ! SET $catr = '-a'.
DEBUG: 4+ if ($this.Attributes -band 1) {
$catr += "r" } else { $catr += "-" } ;
DEBUG: 4+ if ($this.Attributes -band 1) {
$catr += "r" } else { $catr += "-" } ;
DEBUG: ! SET $catr = '-a-'.
DEBUG: 5+ if ($this.Attributes -band 2) {
$catr += "h" } else { $catr += "-" } ;
DEBUG: 5+ if ($this.Attributes -band 2) {
$catr += "h" } else { $catr += "-" } ;
DEBUG: ! SET $catr = '-a--'.
DEBUG: 6+ if ($this.Attributes -band 4) {
$catr += "s" } else { $catr += "-" } ;
DEBUG: 6+ if ($this.Attributes -band 4) {
$catr += "s" } else { $catr += "-" } ;
DEBUG: ! SET $catr = '-a---'.
DEBUG: 7+ $catr
DEBUG: 2+
[String]::Format("{0,10} {1,8}", $_.LastWriteTime.ToString("d"),
$_.LastWriteTime.ToString("t"))
DEBUG: ! CALL method 'System.String ToString(String format)'
DEBUG: ! CALL method 'System.String ToString(String format)'
DEBUG: ! CALL method 'static System.String Format(String format,
Object arg0, Object arg1)'

 Directory: Microsoft.PowerShell.Core\FileSystem::Z:\09 - Error Han
 dling and Debugging

Deshev_940-3C09.fm Page 192 Sunday, January 6, 2008 11:55 AM

C H AP TE R 9 ■ E R R O R H AN D L I N G AN D DE B U G G IN G 193

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 10/24/2007 7:56 AM 94 Trace-Execution.ps1

We get quite a big log that tells us that Get-ChildItem triggers some complex calculations
related to file access attributes in order to output the file Mode string. It also gets the LastWriteTime
and converts everything to strings by using the System.String.Format .NET method. As usual,
to restore the normal shell operating mode, either restart your shell session or invoke Set-PSDebug
passing the Off parameter.

Operation-Specific Tracing

PowerShell allows us to trace operations specific to one of its components. We can get infor-
mation about command discovery or about what command is really invoked when we type
something at the prompt, cmdlet parameter binding or which value went to what parameter,
both implicit and explicit type conversions, and much more. To get that information, we have
to use the Trace-Command cmdlet. It takes a script block that contains the actual command that
needs tracing. The other important parameter is the component name.

Let’s first use Trace-Command to get information about what command is really invoked
when typing gal ii at the command line. We need tracing for the CommandDiscovery compo-
nent. Here is how to do that:

PS> Trace-Command -Name CommandDiscovery -PSHost { gal ii }
DEBUG: CommandDiscovery Information: 0 : Looking up command: gal
DEBUG: CommandDiscovery Information: 0 : Alias found: gal Get-Alias
DEBUG: CommandDiscovery Information: 0 : Attempting to resolve
function or filter: Get-Alias
DEBUG: CommandDiscovery Information: 0 : Cmdlet found: Get-Alias
Microsoft.PowerShell.Commands.GetAliasCommand,
Microsoft.PowerShell.Commands.Utility, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35

CommandType Name Definition
----------- ---- ----------
Alias ii Invoke-Item

As you can see, the gal command got resolved to the Get-Alias cmdlet. Going further, we
see that Get-Alias is implemented by the Microsoft.PowerShell.Commands.GetAliasCommand
.NET class. The PSHost parameter instructs Trace-Command to log messages to the console host
window.

Let’s now investigate how variables are bound to cmdlet parameters when invoking a cmdlet.
We will use the same command as before, changing the component name to ParameterBinding:

PS> Trace-Command -Name ParameterBinding -PSHost { gal ii }
DEBUG: ParameterBinding Information: 0 : BIND NAMED cmd line args
[Get-Alias]
DEBUG: ParameterBinding Information: 0 : BIND POSITIONAL cmd line args
 [Get-Alias]

Deshev_940-3C09.fm Page 193 Sunday, January 6, 2008 11:55 AM

194 CH AP T E R 9 ■ E R R O R H AN DL I N G A N D D E B U G G I N G

DEBUG: ParameterBinding Information: 0 : BIND arg [ii] to
parameter [Name]
DEBUG: ParameterBinding Information: 0 : Binding collection
parameter Name: argument type [String], parameter type
[System.String[]], collection type Array, element type
[System.String], no coerceElementType
DEBUG: ParameterBinding Information: 0 : Creating array with
element type [System.String] and 1 elements
DEBUG: ParameterBinding Information: 0 : Argument type String
is not IList, treating this as scalar
DEBUG: ParameterBinding Information: 0 : Adding scalar element
 of type String to array position 0
DEBUG: ParameterBinding Information: 0 : BIND arg
[System.String[]] to param [Name] SUCCESSFUL
DEBUG: ParameterBinding Information: 0 : MANDATORY PARAMETER CHECK on
cmdlet [Get-Alias]
DEBUG: ParameterBinding Information: 0 : CALLING BeginProcessing
DEBUG: ParameterBinding Information: 0 : CALLING ProcessRecord
DEBUG: ParameterBinding Information: 0 : CALLING EndProcessing

CommandType Name Definition
----------- ---- ----------
Alias ii Invoke-Item

We get a lot of information again: the ii value was interpreted as a positional parameter,
and it was interpreted as the Name parameter. After checking for missing mandatory parame-
ters, the shell went on to process the pipeline for that cmdlet by calling the BeginProcessing,
ProcessRecord, and EndProcessing pipeline execution steps. Those steps are the cmdlet analogs to
the begin, process, and end blocks that we need to process pipelines from functions, scripts,
and script blocks.

Last, but not least, we will use Trace-Command to get information about type casts or
conversions. We will need the TypeConversion component name. Here is how to get informa-
tion about implicit conversions that occur when calculating an expression (remember to revert
Set-PSDebug back to its default setting).

PS> Set-PSDebug -Off
DEBUG: 1+ Set-PSDebug -Off
PS> Trace-Command -Name TypeConversion -PSHost { 1 + 0.5 }
1.5

Hmm—we got nothing! Remember the part about the DivideByZeroException error that
we cannot trap? We hit the same problem here: the 1 + 0.5 expression is computed at parse
time, and the Trace-Command is really given a 1.5 parameter that triggers no type conversions.
Let’s delay calculation to the actual runtime by moving the values to variables:

PS> $a = 1
PS> $b = 0.5
PS> Trace-Command -Name TypeConversion -PSHost { $a + $b }
DEBUG: TypeConversion Information: 0 : Converting "1" to

Deshev_940-3C09.fm Page 194 Sunday, January 6, 2008 11:55 AM

C H AP TE R 9 ■ E R R O R H AN D L I N G AN D DE B U G G IN G 195

"System.Double".
DEBUG: TypeConversion Information: 0 : Original type before
getting BaseObject: "System.Int32".
DEBUG: TypeConversion Information: 0 : Original type after getting
 BaseObject: "System.Int32".
DEBUG: TypeConversion Information: 0 : Standard type conversion.
DEBUG: TypeConversion Information: 0 : Converting integer to
System.Enum.
DEBUG: TypeConversion Information: 0 : Type conversion from
string.
DEBUG: TypeConversion Information: 0 : Custom type conversion.
DEBUG: TypeConversion Information: 0 : Parse type conversion.
DEBUG: TypeConversion Information: 0 : Constructor type
conversion.
DEBUG: TypeConversion Information: 0 : Cast operators type
conversion.
DEBUG: TypeConversion Information: 0 : Looking for
"op_Implicit" cast operator.
DEBUG: TypeConversion Information: 0 : Cast operator for
"op_Implicit" not found.
DEBUG: TypeConversion Information: 0 : Looking for
"op_Explicit" cast operator.
DEBUG: TypeConversion Information: 0 : Cast operator
for "op_Explicit" not found.
DEBUG: TypeConversion Information: 0 : Could not find
cast operator.
DEBUG: TypeConversion Information: 0 : Cast operators type
 conversion.
DEBUG: TypeConversion Information: 0 : Looking for
"op_Implicit" cast operator.
DEBUG: TypeConversion Information: 0 : Cast
operator for "op_Implicit" not found.
DEBUG: TypeConversion Information: 0 : Looking for
 "op_Explicit" cast operator.
DEBUG: TypeConversion Information: 0 : Cast
operator for "op_Explicit" not found.
DEBUG: TypeConversion Information: 0 : Could
not find cast operator.
DEBUG: TypeConversion Information: 0 : Conversion
using IConvertible succeeded.
DEBUG: TypeConversion Information: 0 : Converting
"0.5" to "System.Double".
DEBUG: TypeConversion Information: 0 : Result type
 is assignable from value to convert's type
1.5

Deshev_940-3C09.fm Page 195 Sunday, January 6, 2008 11:55 AM

196 CH AP T E R 9 ■ E R R O R H AN DL I N G A N D D E B U G G I N G

That is much different: we get a full log of the strategies that PowerShell tries in order to
convert the 1 integer to a double. It tries to find implicit and explicit cast operators and, failing
in that, defaults to converting the value through the .NET IConvertible interface that both
integer and double numbers support. To get more information about how the shell converts
between types, refer to Chapter 1.

Command tracing is a complex topic and can quickly drown you with useless information
if you do not use it carefully. Tracing is the heavy-duty tool for script debugging, as it can liter-
ally tell us everything about how the shell works. I personally first use some print debugging
and resort to tracing only when I hit a wicked problem that I cannot figure out in any other way.

Summary
The topics of error handling and script debugging are intricately connected, and hopefully, this
chapter showed exactly that. We can beef up our error handling logic so that we create clear
and self-diagnosing code, which, in turn, will require less debugging in order to make it do what we
really want. The opposite connection is also true—we can use purely error-handling related
techniques, such as error traps, to log error information that helps us in debugging our code.

Adding good error handling capabilities to code is both an important habit and a valuable
skill that anyone working with code can benefit from. Given that, most of the time we spend
writing code is spent not in typing or planning but in debugging code that we have just written,
employing all techniques to reduce debugging time makes sense. Debugging time grows propor-
tionately to script size, and we will use the techniques from this chapter in creating more complex
scripts later in this book.

Deshev_940-3C09.fm Page 196 Sunday, January 6, 2008 11:55 AM

197

■ ■ ■

C H A P T E R 1 0

Signing Scripts

Imagine that one of your duties at work involves performing a tedious manual task every day.
One evening, just before you leave work, you get an e-mail from a coworker that reads, “Hey, I
created this nice PowerShell script that you can run, and it will automatically do the XYZ task
for you.”

You are thrilled! You extract the attachment and immediately run the script. Unfortunately,
it just spews out an incomprehensible error message and stops. You sigh, send a quick “Your
script does not work” message to your coworker and go home.

The next morning, you notice your computer is acting very strange. You dig deeper and
find a key logger installed on your machine capturing passwords and sending them who knows
where. Adding to that, your firewall has mysteriously opened several important ports to the
outside world, and your company president storms into your office demanding an explanation
for that “0wn3d by Evil Borat” red banner on your company web site. Your network security
has been severely compromised. Ouch! You should have read through that script file before
running it!

Well, the PowerShell designers have seen this coming. Such scenarios have long been
plaguing administrators using other scripting technologies like Windows Scripting Host, and
fortunately, you do not have to tremble with paranoia as you read every script every time before
running it. PowerShell has a mechanism for signing scripts, so that you know where they come
from and that they have not been tampered with. We will explore signed scripts in this chapter,
so that none of you, dear readers, loses your job over such a mistake.

How Code Signing Works
Signing code and making 100 percent sure that a program will not harm us is a complex oper-
ation with some pretty serious theory behind it. When dealing with signed executable code, we
have two problems: the integrity of the code and its origin. We need to know that a script has
not been tampered with. For example, we have to make sure somebody has not intercepted
Mike’s script and inserted a del C:*.* command or something even worse. In addition, we
need to know for certain that the code originated with the same person that it claims to be
from. In other words, was that script claiming to come from Mike really written by Mike?

Deshev_940-3C10.fm Page 197 Sunday, January 6, 2008 11:57 AM

198 CH AP T E R 1 0 ■ S IG N IN G SCR IP T S

Guaranteeing Script Integrity
To verify that we are working with a script in its original form without any additions or dele-
tions, we can attach extra information about the script when we send it to others. Computer
scientists have come up with functions that can compute a checksum for a stream of data;
those can help us here. Some of the most popular algorithms that can calculate a checksum are
MD5 and SHA-1. Those functions, sometimes called hash functions, go over all the data and
calculate a number that is highly unlikely to be the same for another stream of data. Changing
even a single bit in the original data will yield a completely different checksum value. So, in the
case of our friend Mike sending us a script, we really need him to calculate a checksum for the
script and include that in his message. We will calculate the checksum for the script using the
same algorithm once we get the message. If the two checksum values are the same, then the
script has not been modified.

The hash function scheme has one flaw. A malicious person can intercept the message,
modify the script, recalculate the checksum, and replace the original checksum with the new
one. We need a way to guarantee that the checksum has not been modified too. We can encrypt
the checksum, but we are left with the problem of transmitting the encryption key. It is point-
less to include the key in the message—an attacker will simply modify the script and reencrypt
the new checksum using the key. This problem cannot be solved using one-key, or symmetric,
encryption. We need to encrypt the key using an asymmetric algorithm. Asymmetric encryp-
tion algorithms use two keys: one to encrypt the data, another to decrypt it. The encryption
key, also called the private key, is never transmitted. The decryption key, or the public key, can
be freely transmitted to everyone. So here is our complete solution: Mike calculates a
checksum for his script, encrypts it with his private key, and sends us a message containing the
script, the encrypted checksum, and his public key. We can then use the public key to decrypt
the checksum, calculate another checksum, and compare the two values. If they are equal,
then we are safe running the script.

Certifying the Origin of a Script
The scheme to certify script integrity looks perfect—until we realize that a malicious person
can again intercept the message, modify the script, update the checksum, encrypt it with her
private key, and then replace the included public key with her public key. To protect ourselves
from that type of attack, we need a way to tell that the public key we got is Mike’s key and not
somebody else’s. We cannot do this all by ourselves. We need a third-party entity that we trust
to keep record of everybody’s public keys and confirm for us that a key really belongs to the
person or organization we believe it to. Today, this task is performed by institutions known as
certification authorities (CAs). The most popular ones are companies like VeriSign and Thawte.

Certification authorities issue all public/private key pairs and can tell if a public key really
belongs to a given person or organization. When we purchase a digital identity from a CA, essen-
tially, we get a public/private key pair. We receive our keys in a private key file and a certificate

Deshev_940-3C10.fm Page 198 Sunday, January 6, 2008 11:57 AM

C H AP TE R 1 0 ■ S I G N I N G S CR I P TS 199

file that contains the public key and additional information such as the name of the certificate
holder, the expiry date, and so on. Certificates can be distributed to anyone, and anyone can
verify if they belong to the right person. How do we verify that? Along with the public key and
the information about the certificate holder, certificates carry a signature—a checksum encrypted
with the certificate authority’s private key. Anyone can obtain the public key for the CA; in fact,
the keys for the most popular authorities are already available with any Windows installation.
Using a public key, anyone can verify a certificate’s integrity.

Back to our problem: Mike buys a digital identity from a certificate authority, and we start
again. He calculates a checksum for the script and uses his private key to encrypt it. He then
sends the script, the encrypted checksum, and his certificate (containing his public key). Upon
receiving his message, we use the certificate authority’s public key to verify if Mike’s certificate
is authentic. If it is, we extract Mike’s public key from the certificate and use it to decrypt the
script checksum. Now, we can calculate the checksum ourselves and compare our value to the
decrypted one. If the two are equal, we are safe running the script. This approach cannot be
broken, because an attacker will not have the CA private key and he cannot issue a fake certifi-
cate. CAs take all the extra care and responsibility for preventing anyone from getting hold of
their private keys.

■Note The mechanism for exchanging keys and certifying the origin of the script we just described is
commonly referred as public key infrastructure (PKI). It is widely used to establish trust on the Internet and
has been used by people to verify different signatures and establish and verify trust to other persons or enti-
ties. The full PKI standard includes a lot more than binding a public key to a user identity. For example, it
includes mechanisms for revoking certificates that have expired or have been compromised. In this chapter,
I will cover signatures and key exchanges only.

Managing Certificates
Digital certificates are all around us. Many activities, not limited to secure sites we trust or
signed programs we run, require that we exchange keys and keep track of certificates. Once we
trust a software publisher, we do not need to confirm that we trust her products every time we
use them. All trusted certificates get stored in the Windows certificate store, and programs like
PowerShell get certificate information from that store. The easiest way to manage certificates
is through the Microsoft management console tool and its Certificates snap-in. To start that,
type mmc in your Windows Vista Start Menu search box or in the Run dialog box, if you are
running a different version of Windows. Once the management console tool starts, choose
Add/Remove Snap-in from the File menu. You should see a dialog box similar to the one shown
in Figure 10-1. Pick the Certificates snap-in, as shown in Figure 10-1.

Deshev_940-3C10.fm Page 199 Sunday, January 6, 2008 11:57 AM

200 CH AP T E R 1 0 ■ S IG N IN G SCR IP T S

Figure 10-1. Adding the Certificates snap-in

Click the Add button, and click OK. You will be presented with a dialog similar to the one
shown in Figure 10-2 that asks what the snap-in will manage.

Figure 10-2. Choosing what certificate store to manage

Select that you want to manage certificates for your user account, and click the Finish button.
We will work with certificates stored in the current user certificate store in this chapter. If

you need to run signed PowerShell scripts under a service account or under all accounts on the

Deshev_940-3C10.fm Page 200 Sunday, January 6, 2008 11:57 AM

C H AP TE R 1 0 ■ S I G N I N G S CR I P TS 201

machine, add another instance of the Certificates snap-in, this time choosing to manage certif-
icates for a service account or a computer. Figure 10-3 shows how the management console
looks with two snap-ins installed: one for the current user and another for the computer.

Figure 10-3. Managing user and system certificates

As you can see, we have a number of certificate stores that look like folders, for both the
current user account and the entire system.

We can access certificates from within PowerShell too. By default, the certificate provider
registers a cert: drive that we can navigate as if we were navigating the file system. Here is how
we can use that to enumerate the certificate stores for the current user:

PS> dir cert:\CurrentUser

Name : SmartCardRoot

Name : UserDS

Name : AuthRoot

Name : CA

Deshev_940-3C10.fm Page 201 Sunday, January 6, 2008 11:57 AM

202 CH AP T E R 1 0 ■ S IG N IN G SCR IP T S

Name : Trust

Name : Disallowed

Name : My

Name : Root

Name : TrustedPeople

Name : TrustedPublisher

Note that we are getting the same results that we do from the management console tool.
The only difference is that the management console snap-in displays friendly names like Personal
or Trusted Root Certification Authorities, while the PowerShell provider uses the store short
names like My and AuthRoot.

Creating a Self-Signed Certificate
Getting a code-signing certificate provides us the best level of security, but that is not always
the most practical thing to do. Requesting a certificate from a certification authority takes
some time, as the CA has to run background checks and verify your identity before issuing a
certificate—not to mention that a certificate is not cheap. Using the code signing tools and the
infrastructure provided by PowerShell, we can achieve a good balance of security and practi-
cality by issuing our own self-signed certificate. We can create a self-signed certificate and use
it to sign scripts much in the same way as we would use a certificate issued by a third-party
certification authority. Self-signed certificates are just like third-party certificates and can be
used to verify a signature. The only problem with them is that they do not carry the same degree of
trust, as everyone can create such a certificate, and not everyone has the resources to protect
his private key. Most of the time, this limited protection is not a significant problem when
distributing scripts in a single network—you know the certificate issuer and know that he
knows how to protect the certificate private key from unauthorized access.

Creating a Certification Authority Certificate
To issue a code signing certificate, we have to create a certification authority certificate first.
The CA certificate has to be imported to the local certificate store, so that it can be used to verify
the script signature. We will use the makecert.exe tool to create the certificates. makecert.exe is
a part of the Microsoft .NET 2.0 Framework SDK which is freely available for download. If you
have the SDK installed, makecert.exe may already be in your PATH, and you should be able to
invoke it by just typing its name. If the Framework SDK executables’ folder is not in your PATH,
you can add it yourself: just search for makecert.exe in your Program Files folder, and add the
folder that contains the executable to the system PATH. So, pick a directory that will store the
generated certificates and keys, and navigate there. Then, call makecert.exe using the following
parameters:

PS> cd C:\PowerShell\certs
PS> makecert -n "CN=Pro Windows PowerShell Certification Authority" `

Deshev_940-3C10.fm Page 202 Sunday, January 6, 2008 11:57 AM

C H AP TE R 1 0 ■ S I G N I N G S CR I P TS 203

 -a sha1 -eku 1.3.6.1.5.5.7.3.3 -r -ss Root -sr CurrentUser `
 -sv ProPowerShell_CA.pvk ProPowerShell_CA.cer

Succeeded

Before seeing the “Succeeded” message, you will be presented with several dialog windows
that request your input. First, you have to pick a password for your private key file; Figure 10-4
shows how key password dialog.

Figure 10-4. Setting a private key password

The rule when dealing with keys is that all private keys, stored in files, are password-protected.
This adds an extra layer of security and prevents others from signing code even if they manage
to steal your private key. After setting a private key password, you will be asked to confirm it
once again. Figure 10-5 shows the password confirmation dialog you can expect.

Figure 10-5. Confirming the private key password

After confirming the password, the certification authority certificate will automatically be
added to the current user certificate store. Windows will display a warning dialog that reminds
you that trusting this certificate means that you automatically trust all certificates issued by
that entity. Figure 10-6 shows the rather scary looking dialog.

Confirming that you want to add the certificate is the last step. You can find the certificate
imported under the Trusted Root Certification Authorities folder, and you can delete it
later if you change your mind about trusting that authority. Figure 10-7 shows what your trusted
root certification authorities list looks like after adding our certificate there.

Deshev_940-3C10.fm Page 203 Sunday, January 6, 2008 11:57 AM

204 CH AP T E R 1 0 ■ S IG N IN G SCR IP T S

Figure 10-6. Adding the certification authority certificate to the certificate store

Figure 10-7. Viewing the trusted certification authorities

Deshev_940-3C10.fm Page 204 Sunday, January 6, 2008 11:57 AM

C H AP TE R 1 0 ■ S I G N I N G S CR I P TS 205

Double-clicking the certificate will display additional information. You will see something
that looks like Figure 10-8.

Figure 10-8. Viewing the certification authority certificate details

As you can see from the screenshot, the certificate is valid until January 1, 2040. That is
quite a long time!

Now, let me take the time to explain the cryptic options we passed to makecert.exe at the
command line:

• -n: This is the name of the certificate holder. It can be any name that conforms to the
X.500 standard. Standards aside, the simplest way to provide a name is to use the
CN=<your name> syntax.

• -a: This is the signature algorithm. We are using the SHA-1 algorithm by specifying the
sha1 option. Another alternative is the MD5 algorithm. Switching to that requires that we
use –a md5. The signature algorithm is the algorithm used to compute the checksum that
guarantees the certificate file integrity.

• -eku: This option specifies the enhanced key usage object identifier. We pass
1.3.6.1.5.5.7.3.3, which is a known standardized constant. To spare you the trouble of
reading the X.500 standard, the constant marks the certificate as one that will be used for
code signing. makecert.exe can create all types of certificates; for example, passing
1.3.6.1.5.5.7.3.1 will create a server authentication certificate that can be used for SSL
communication.

Deshev_940-3C10.fm Page 205 Sunday, January 6, 2008 11:57 AM

206 CH AP T E R 1 0 ■ S IG N IN G SCR IP T S

• -r: This issues a self-signed certificate and tells makecert.exe that it should not use a
CA’s private key to issue this certificate.

• -ss: This is the name of the certificate store. This is the location of the certificate store
that the newly created certificate will be imported into. We pass Root, because we want
the certificate to be imported as a root certification authority certificate.

• -sr: This is the certificate store location. There are two valid options here: CurrentUser
and LocalMachine. The former adds the certificate for the current user; the latter, for all
users on the machine. Note that you need administrator privileges if you wish to add the
certificate to the LocalMachine store. For Windows Vista, that requires elevated privileges,
and you have to start your PowerShell session as an administrator.

• -sv: This is the path to the private key file. makecert.exe will create this file and store the
certificate private key inside. The file will later be used to sign newly issued certificates.
In our case, this is ProPowerShell_CA.pvk—the file that gets password protected.

• ProPowerShell_CA.cer: This is the name of the file that will contain the certificate. As I
mentioned before, it contains the public key and additional data about the certificate holder.

Issuing a Code-Signing Certificate
Having a certificate authority now allows us to issue a code-signing certificate. Again, we will
use makecert.exe, but this time, we will point it to the certificate authority’s private key and
public certificate. Here is the command:

PS> makecert -n "CN=Pro Windows PowerShell Script Publisher" `
 -ss MY -a sha1 -eku 1.3.6.1.5.5.7.3.3 -pe `
 -iv ProPowerShell_CA.pvk -ic ProPowerShell_CA.cer

Succeeded

Again, before we get to the “Succeeded” message, we will be prompted for the certificate
authority private key password. The prompt dialog should look like the one shown in Figure 10-9.

Figure 10-9. Entering the certification authority private key password

Deshev_940-3C10.fm Page 206 Sunday, January 6, 2008 11:57 AM

C H AP TE R 1 0 ■ S I G N I N G S CR I P TS 207

The makecert.exe tool does not have the most descriptive options in the world, so let’s go
through each of them:

• -n: This is the certificate holder name. Since this is our script publisher certificate, we
type CN=Pro Windows PowerShell Script Publisher. Use a value that will help you easily
distinguish between the certification authority and the script publisher certificate.

• -ss: This is the name of the certificate store that will contain our certificate. This time we
type MY, because we want the certificate in our personal certificate store. This is not a
certification authority certificate and has to be placed in a different location.

• -a: This is the checksum algorithm. Again we’re using SHA-1.

• -eku: This is the enhanced key usage parameter. Just as with the certification authority
certificate, we pass 1.3.6.1.5.5.7.3.3 to indicate that the certificate will be used to sign
executable code.

• -pe: This declares the certificate as exportable and tells makecert.exe to store the private
key inside the certificate store. This makes it possible for us to export the certificate
together with its associated private key. You will see how to do that later in this chapter.

• -iv ProPowerShell_CA.pvk: This is the certification authority private key file. The private
key is used to sign the certificate so that its authenticity can later be verified.

• -ic ProPowerShell_CA.cer: This is the certification authority certificate. It is used to
obtain additional information about the certification authority that is included in our
certificate.

After creating our certificate, we will get no new files in the current folder; the certificate
can be found in the certificate store. Figure 10-10 shows it stored inside the Personal store.

Double-clicking the certificate displays additional information about it. Figure 10-11
shows how that looks for our certificate.

There are several things to note here:

• The certificate purposes are to ensure that software came from a specific software publisher
and that it has not been altered after publication.

• The certificate was issued to Pro Windows PowerShell Script Publisher; this is the certif-
icate holder name that we provided to makecert.exe.

• The certificate was issued by Pro Windows PowerShell Certification Authority, our
personal certification authority.

• The key icon indicates that this certificate has a private key associated with it in the certifi-
cate store. This is the effect of the –pe parameter that we used when generating the
certificate.

Deshev_940-3C10.fm Page 207 Sunday, January 6, 2008 11:57 AM

208 CH AP T E R 1 0 ■ S IG N IN G SCR IP T S

Figure 10-10. Our script-signing certificate stored in the Personal store

Figure 10-11. Displaying information about code-signing certificate

Deshev_940-3C10.fm Page 208 Sunday, January 6, 2008 11:57 AM

C H AP TE R 1 0 ■ S I G N I N G S CR I P TS 209

People often need to have a separate copy of their certificates for various purposes, like
backup. We can get a normal file for our certificate by exporting it from the store. To do that, we
have to right-click the certificate and select Export from the All Tasks menu. We are presented
with the certificate export wizard. We should choose to export the private key together with the
certificate, as shown in Figure 10-12.

Figure 10-12. Exporting a certificate along with its corresponding private key

Next, we have to choose the file format. Figure 10-13 shows the wizard page that does that.
The only available file format is a Personal Information Exchange file, which has the PFX file
extension. PFX files are files with a standardized publicly supported format that contain both a
certificate and the private key associated with that certificate.

We will leave the rest of the options with their default values.
Since we are exporting the private key with this certificate, we are presented with a password

configuration dialog. Remember that all files containing private keys are password-protected.
Figure 10-14 shows the password configuration wizard page.

We still need to select a name and location for the certificate file and save it. I have named
mine ScriptSign.pfx and stored it in the same folder that contains the certification authority
key and certificate. That certificate file can now be imported in any certificate store on any
machine. In addition, we can use it directly from PowerShell to sign scripts.

Deshev_940-3C10.fm Page 209 Sunday, January 6, 2008 11:57 AM

210 CH AP T E R 1 0 ■ S IG N IN G SCR IP T S

Figure 10-13. Selecting the certificate export file format

Figure 10-14. Setting a password for the exported certificate file

Deshev_940-3C10.fm Page 210 Sunday, January 6, 2008 11:57 AM

C H AP TE R 1 0 ■ S I G N I N G S CR I P TS 211

Signing Scripts
Before we sign a script, let’s make sure that we require that running a script requires that it has
been signed beforehand. To enforce that, we have to switch our current script execution policy
to AllSigned. Only users with administrator privileges can do that on a machine, and on Windows
Vista, those users need to run the shell with elevated privileges. So, start a shell session as an
administrator, and call the Set-ExecutionPolicy cmdlet:

PS C:\> Set-ExecutionPolicy AllSigned
PS C:\> Get-ExecutionPolicy
AllSigned

Let’s now create a simple script that returns all certificate files in the current folder and try
to run it. Here is what happens:

PS> Set-Content Get-CertificateFiles.ps1 "dir *.cer"
PS> .\Get-CertificateFiles.ps1
File C:\PowerShell\certs\Get-CertificateFiles.ps1 cannot be loaded. The file C:\Po
werShell\certs\Get-CertificateFiles.ps1 is not digitally signed. The script will n
ot execute on the system. Please see "get-help about_signing" for more deta
ils..
At line:1 char:19
+ .\Get-CertificateFiles.ps1 <<<<

Since we are running under the AllSigned script execution policy, we are not allowed to
run unsigned scripts. Let’s sign it! We need to get hold of our signing certificate and pass it,
along with the script path, to the Set-AuthenticodeSignature cmdlet.

Let’s get the certificate from the certificate store and use it to sign the script:

PS> $certStore = dir cert:\CurrentUser\My
PS> $certStore

 Directory: Microsoft.PowerShell.Security\Certificate::CurrentUser\My

Thumbprint Subject
---------- -------
E5F1C5F21B5E276374626A9C4F68E39DBB0BB062 CN=Pro Windows PowerShell Scri...

PS> Set-AuthenticodeSignature Get-CertificateFiles.ps1 -cert $certStore

 Directory: C:\PowerShell\certs

SignerCertificate Status Path
----------------- ------ ----
E5F1C5F21B5E276374626A9C4F68E39DBB0BB062 Valid Get-Certifica...

Deshev_940-3C10.fm Page 211 Sunday, January 6, 2008 11:57 AM

212 CH AP T E R 1 0 ■ S IG N IN G SCR IP T S

Note how we get the certificate object. My personal store contains only one certificate. If it
contained more, I would have had to use an indexer like (dir cert:\CurrentUser\My)[0] to get
to the correct certificate. As you can see in the preceding example, Set-AuthenticodeSignature
returns the script signature. You can get a script’s signature at any time by calling
Get-AuthenticodeSignature:

PS> Get-AuthenticodeSignature Get-CertificateFiles.ps1

 Directory: C:\PowerShell\certs

SignerCertificate Status Path
----------------- ------ ----
E5F1C5F21B5E276374626A9C4F68E39DBB0BB062 Valid Get-Certifica...

If the Status property is Valid, the script is safe for execution. We can now run it:

PS> .\Get-CertificateFiles.ps1

Do you want to run software from this untrusted publisher?
File C:\PowerShell\certs\Get-CertificateFiles.ps1 is published by CN=Pro
Windows PowerShell Script Publisher and is not trusted on your system. Only
 run scripts from trusted publishers.
[V] Never run [D] Do not run [R] Run once [A] Always run [?] Help
(default is "D"):A

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\PowerShell\certs

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 9/27/2007 5:07 PM 632 ProPowerShell_CA.cer

This is the first time that we have run a script from that publisher. PowerShell notices that
and asks if we really trust that guy. It displays information about the publisher, so that we can
make an intelligent decision. We decide to always run code from Pro Windows PowerShell
Script Publisher and choose A, so that we do not get that question anymore. The script then
executes.

What does “trusting a publisher” really mean? When you trust a script publisher, PowerShell
extracts the public certificate from the signed script and stores it in your Trusted Publishers
certificate store (see Figure 10-15).

Deshev_940-3C10.fm Page 212 Sunday, January 6, 2008 11:57 AM

C H AP TE R 1 0 ■ S I G N I N G S CR I P TS 213

Figure 10-15. Our publisher certificate added to the Trusted Publishers store

Deleting the certificate from the Trusted Publishers store will present you with the “Do
you trust this guy?” question the next time you try to run that script.

We can get the publisher certificate from the PFX file we previously exported, and that has
both advantages and disadvantages to getting the certificate from the certificate store. To extract
the certificate from the PFX file, we have to use the Get-PfxCertificate cmdlet:

PS> $certFile = Get-PfxCertificate ScriptSign.pfx
Enter password: **********

Note that we had to enter the private key password to get the certificate. This feels a bit
more secure than the certificate store approach, because getting a certificate from the store did
not ask for a password. The certificate store advantage is that it is a far more secure place to
store certificates and does not require you to fiddle with file system permissions. Anyway, once
you get the certificate, everything about signing a script looks the same:

PS> Set-AuthenticodeSignature Get-CertificateFiles.ps1 -cert $certFile

 Directory: C:\PowerShell\certs

Deshev_940-3C10.fm Page 213 Sunday, January 6, 2008 11:57 AM

214 CH AP T E R 1 0 ■ S IG N IN G SCR IP T S

SignerCertificate Status Path
----------------- ------ ----
E5F1C5F21B5E276374626A9C4F68E39DBB0BB062 Valid Get-Certifica...

PS> Get-AuthenticodeSignature Get-CertificateFiles.ps1

 Directory: C:\PowerShell\certs

SignerCertificate Status Path
----------------- ------ ----
E5F1C5F21B5E276374626A9C4F68E39DBB0BB062 Valid Get-Certifica...

Here is what the script looks like after signing:

PS> type Get-CertificateFiles.ps1
dir *.cer

SIG # Begin signature block
MIIEdAYJKoZIhvcNAQcCoIIEZTCCBGECAQExCzAJBgUrDgMCGgUAMGkGCisGAQQB
…
HbdgCU3A58lcpdrhYc2Zzt5n68njnAuTO1EKaWWkPIqUYTmBaRF2/A==
SIG # End signature block

As you can see, the signature is embedded in a comment section. Let’s now verify how
secure signing is by changing the script. Let’s pretend that a malicious user gets the script and
inserts a del C:*.* command at the top:

del C:*.*
dir *.cer

SIG # Begin signature block
…
SIG # End signature block

We suspect nothing and run the script:

PS> .\Get-CertificateFiles.ps1
File C:\PowerShell\certs\Get-CertificateFiles.ps1 cannot be loaded. The con
tents of file C:\PowerShell\certs\Get-CertificateFiles.ps1 may have been ta
mpered because the hash of the file does not match the hash stored in the d
igital signature. The script will not execute on the system. Please see "ge
t-help about_signing" for more details..
At line:1 char:26
+ .\Get-CertificateFiles.ps1 <<<<

Deshev_940-3C10.fm Page 214 Sunday, January 6, 2008 11:57 AM

C H AP TE R 1 0 ■ S I G N I N G S CR I P TS 215

PowerShell rightfully complains that the content of the script has changed since the time
of its signing. It will protect us by refusing to execute the code inside. Let’s now manually verify
the signature:

PS> Get-AuthenticodeSignature Get-CertificateFiles.ps1

 Directory: C:\PowerShell\certs

SignerCertificate Status Path
----------------- ------ ----
E5F1C5F21B5E276374626A9C4F68E39DBB0BB062 HashMismatch Get-Certifica...

The Status property has a HashMismatch value. That means that the calculated checksum
is different than the one embedded with the signature. You can feel safe now! Nobody can trick
you into running code that you did not intend to.

Running Scripts on Other Machines
One of the limitations of signing scripts using your own self-signed certification authority
certificate is that it is very hard to verify that signature on another machine. Had we been using
a VeriSign-issued certificate to sign our scripts, we would have had no problem—the VeriSign
root certificate is installed on every Windows machine. To achieve the same, we have to install
our certification authority certificate on all machines that have to run our scripts. Here is what
happens if we run a signed script on a machine that does not have our certification authority’s
certificate installed:

PS> .\Get-CertificateFiles.ps1
File C:\PowerShell\certs\Get-CertificateFiles.ps1 cannot be loaded. A certi
ficate chain processed, but terminated in a root certificate which is not t
rusted by the trust provider.
At line:1 char:26
+ .\Get-CertificateFiles.ps1 <<<<

PowerShell tries to go find the issuer certificate in the Trusted Root Authorities store and
fails. That is why we need to export the certificate from the source machine and import it on
every destination machine that we need to support.

To export our CA certificate, we have to right-click it and choose Export from the All Tasks
context menu option. The second page of the export wizard will ask for the certificate file type.
Go with the default DER file format, as shown on Figure 10-16.

That is all. Save the certificate to a CER file, and transfer it to the target machine. Note that
you are not asked to provide a password this time. That is because this certificate contains a
public key only. It will not be used to sign files, just to verify previously signed ones. And, of
course, your certification authority private key is stored only inside that ProPowerShell_CA.pvk
file that makecert.exe created the first time. This is the file you have to guard most carefully.

Deshev_940-3C10.fm Page 215 Sunday, January 6, 2008 11:57 AM

216 CH AP T E R 1 0 ■ S IG N IN G SCR IP T S

Figure 10-16. Selecting an export certificate file format

Once you get to the target machine, open another management console, and add the
Certificates snap-in. Navigate to the Trusted Root Certification Authorities certificate store,
right-click the Certificates subfolder, and choose Import from the All Tasks context menu.
The first step in the import wizard will ask you to navigate to the certificate file. Pick the CER
file you exported in the previous operation.

Next, you will be asked to confirm that you really want to import the certificate under the
Trusted Root Certification Authorities store; Figure 10-17 shows that.

You will see the same warning that you saw on Figure 10-6 asking you to confirm that you
really want to add a new trusted certification authority to your certificate store. Please, double-
check the certificate thumbprint before you do so, especially if somebody else has given you
the certificate and you have not generated it yourself. Any extra effort spent checking those
certificates pays off in hours of good sleep later on!

You will be asked to confirm that you trust the Pro Windows PowerShell Script Publisher
entity and whether you really want to run code originating from that person or organization.
You can avoid even that by exporting the Trusted Publisher certificate that you saw on Figure 10-15
and importing it in the same store on the target machine. Most often, manually importing the
publisher certificate is not worth the hassle, as creating the same entry in the Trusted Publisher
store takes a single key stroke.

Deshev_940-3C10.fm Page 216 Sunday, January 6, 2008 11:57 AM

C H AP TE R 1 0 ■ S I G N I N G S CR I P TS 217

Figure 10-17. Importing a new trusted root certification authority certificate

Summary
Signing code and using checksum and encryption algorithms is a vast topic, and we have just
scratched the surface of it. You learned how signing files works, and how code origins and integrity
are guaranteed in an inherently insecure medium such as the Internet. You also learned how to
exchange keys and certificates and how to manage and configure the authorities whom we
trust with verifying our signatures.

Using the tools demonstrated in this chapter, it is perfectly possible and feasible to set up
your environment so that all production servers running PowerShell scripts require all scripts
to be signed. Signing your scripts and requiring the use of signed scripts really does make your
network bulletproof. In addition, signing any type of code is not much different than signing
scripts. You are a small step away from requiring all programs running on important machines
to be signed by a known publisher or by you, so that you know there will be no unpleasant
surprises.

Deshev_940-3C10.fm Page 217 Sunday, January 6, 2008 11:57 AM

219

■ ■ ■

C H A P T E R 1 1

The Shell Environment
and Its Configuration

Every day, I continue to be amazed at the extent to which PowerShell can be tweaked and
customized. It offers a wide range of configurable options that we can change by modifying
variables or functions. This chapter will describe the shell environment, how we can get infor-
mation about the shell settings, and how to configure the most popular options of the shell. We
will work with the initialization scripts, or the so-called user profile scripts, that allow us to save
configuration-related code and execute it for all instances of the shell. Finally, I will show how
the shell can call our code when building the prompt string or when looking for strings to complete
the current command.

Apart from being very customizable, PowerShell has been designed so that it is easy to host
its core in your own application. Many products do that to provide all sorts of advanced features,
so our script code can run in many different types of PowerShell hosts. You will learn how to set
configuration options for a specific shell host and configure it independently. By creating host-
specific configurations, we can benefit from a host’s advanced features when they are available.

Shell Hosts
The powershell.exe program is a console application. That fact, combined with previous
experience with different shells, may lead us into thinking about command-line shells as console
applications. That may not always be true. For example, the official PowerShell development
guidelines explicitly state that no code should assume it is running in a console environment
and that it should never ever output text directly to the console. Why is that? One of the design
considerations for the shell was that it has to be easy to embed a shell in any application—
and that really means any application, not just console ones. Applications that embed Power-
Shell are called shell hosts, and they can be all sorts of applications—GUI tools, services, and
even applications running on a remote machine, in addition to console applications.

Why do people need to host PowerShell in their applications? Reasons vary, but one of the
most popular ones is to provide better shell experience than the one that powershell.exe provides,
including better command-line completion, fully featured debugging, and data visualization.
Another popular use for embedding a shell is reusing its services (providers, cmdlets, and so
on). The new Microsoft Windows administration model requires that administrator tools do
not modify the system state directly. Instead, such tools are supposed to generate PowerShell
scripts that do the real work. The benefits of that approach are huge. For starters, those scripts

Deshev_940-3C11.fm Page 219 Thursday, January 10, 2008 2:56 PM

220 CH AP T E R 1 1 ■ T HE SH E L L E N V IR O N M E N T AN D IT S C ON F I G U R A T I ON

can be saved and reexecuted later or executed on many machines. You can even host PowerShell
in a Microsoft Management Console snap-in and combine the standard administrator GUI
interface with the soon-to-be-standard command-line interface.

PowerShell exposes the shell host to scripts so that code running in the shell can commu-
nicate with and easily get information about the host and the environment. For example, we
can query the host name and ask it to perform user-interface-related services for us. Let’s now
get the host object and see what it has to offer. We do that through the $host global variable:

PS> $host

Name : ConsoleHost
Version : 1.0.0.0
InstanceId : 042ba062-31ac-42e3-8e49-96730e454a28
UI : System.Management.Automation.Internal.Host.Internal
 HostUserInterface
CurrentCulture : en-US
CurrentUICulture : en-US
PrivateData : Microsoft.PowerShell.ConsoleHost+ConsoleColorProxy

Another way to get to the host object would be to call the Get-Host cmdlet. Both approaches
do the same thing with the only difference being that the $host variable name is shorter to type.

In the preceding code, we get an instance of the default
Microsoft.PowerShell.ConsoleHost object that provides the basic hosting services for us. We
can query the host object and use the information it provides to find out what host we are
running under, for example, the name and the version of the host application. Writing code
that does different things under different hosts is generally not advised, but that may some-
times be our only choice: suppose we need to work around a host bug or know if an advanced
feature is available before actually using it.

The most important services a host object offers are UI-related operations. While those are
not meant to be used directly from scripts and were primarily intended to support cmdlet authors,
we can still take advantage of some of them, as you will see later in this chapter. The UI entry
point is the $host.UI property that returns a PSHostUserInterface object. This is the object
implementing the essential contract a host has to offer to scripts and cmdlets. You will see that
the contract resolves about a command-line interface and involves methods for reading and
writing text. Here are the PSHostUserInterface methods:

PS> $host.UI | Get-Member -type Method

 TypeName: System.Management.Automation.Internal.Host.InternalHostUs
erInterface

Name MemberType Definition
---- ---------- ----------
Equals Method System.Boolean Equals(Object obj)
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()

Deshev_940-3C11.fm Page 220 Thursday, January 10, 2008 2:56 PM

CH AP T E R 1 1 ■ T HE SH E L L E N V IR O N M E N T AN D IT S C ON F I G U R A T I ON 221

get_RawUI Method System.Management.Automation.Host...
Prompt Method System.Collections.Generic.Dictio...
PromptForChoice Method System.Int32 PromptForChoice(Stri...
PromptForCredential Method System.Management.Automation.PSCr...
ReadLine Method System.String ReadLine()
ReadLineAsSecureString Method System.Security.SecureString Read...
ToString Method System.String ToString()
Write Method System.Void Write(String value), ...
WriteDebugLine Method System.Void WriteDebugLine(String...
WriteErrorLine Method System.Void WriteErrorLine(String...
WriteLine Method System.Void WriteLine(), System.V...
WriteProgress Method System.Void WriteProgress(Int64 s...
WriteVerboseLine Method System.Void WriteVerboseLine(Stri...
WriteWarningLine Method System.Void WriteWarningLine(Stri...

As you can see, the PSHostUserInterface methods prompt the user for input, read text
input, and write back normal output, diagnostics, and progress messages. We can call those
methods directly:

PS> $host.UI.WriteLine("Hello")
Hello

As previously mentioned, those methods are primarily targeted at cmdlet authors, and
calling $host.UI.WriteLine() offers no advantages to calling the Write-Host cmdlet. As a
matter of fact, it is highly likely that if a future version of the host methods changes in a way that
is not backward compatible, the Write-Host cmdlet will continue to work. In other words, the
safer way to write to the host is through the official cmdlet.

The PSHostUserInterface object offers high-level functions for working with the shell host.
We have a somewhat lower level alternative that we can use to manipulate various interesting
aspects of our shell session. We can do that through the raw user interface object. This is an
object of the PSHostRawUserInterface type that offers access to physical properties of the shell
window: the character buffer, the window properties, text foreground and background color,
and so on. Here is how we can get the most important properties:

PS> $host.UI.RawUI

ForegroundColor : Gray
BackgroundColor : Black
CursorPosition : 0,299
WindowPosition : 0,275
CursorSize : 25
BufferSize : 71,300
WindowSize : 71,25
MaxWindowSize : 71,70
MaxPhysicalWindowSize : 205,70
KeyAvailable : False
WindowTitle : PowerShell

Deshev_940-3C11.fm Page 221 Thursday, January 10, 2008 2:56 PM

222 CH AP T E R 1 1 ■ T HE SH E L L E N V IR O N M E N T AN D IT S C ON F I G U R A T I ON

At the very least, we can use this object to modify the shell session and set our custom color
scheme. Assume I do not like the default Windows Vista look of gray text on a black background,
and I want a classic Borland IDE look with yellow text on a blue background. Here is how to do it:

PS> $host.UI.RawUI.BackgroundColor = "blue"
PS> $host.UI.RawUI.ForegroundColor = "yellow"
PS>Clear-Host
PS>

The Clear-Host call is needed to force a redraw of the entire console buffer. Figure 11-1
shows how my shell looks after changing the colors.

Figure 11-1. A shell window with a modified color scheme

The raw UI offers interesting possibilities for modifying the console window. Here is how
we can set the window size and title:

PS> $size = $host.UI.RawUI.WindowSize
PS> $size.Width = 50
PS> $size.Height = 20
PS> $host.UI.RawUI.WindowSize = $size
PS> $host.UI.RawUI.WindowTitle = "RawUI Rocks!"
PS>

Modifying the window size needs some explanation. It seems that directly setting the
$host.UI.RawUI.WindowSize.Width and $host.UI.RawUI.WindowSize.Height properties does
not trigger a user interface update. The host only updates the UI when we set the WindowSize
property, so we get a reference to the original WindowSize, modify it, and assign the same object
back to trigger an update. Figure 11-2 shows the end result: a smaller shell window with an odd
window title.

Deshev_940-3C11.fm Page 222 Thursday, January 10, 2008 2:56 PM

CH AP T E R 1 1 ■ T HE SH E L L E N V IR O N M E N T AN D IT S C ON F I G U R A T I ON 223

Figure 11-2. A heavily modified shell window

User Profile Scripts
Looking at the nice ways to modify a shell session and set up the perfectly styled and configured
window, we naturally wish for a way to save those settings and apply them for every console
session. We can do that by saving the configuration code in our profile script, a script placed in
a location that’s known to the shell and that gets executed every time the shell starts. PowerShell
offers several options to choose from when saving configuration scripts. According to our needs,
we have to pick a different location or a different profile script. The options are explained in the
following sections.

Settings for All Users and All Shells
Settings for all shells typically are placed in files named profile.ps1 that are located inside the
Windows PowerShell install folder. To get to that location in PowerShell, use the $PSHome variable
like this:

PS> $PSHome
C:\Windows\System32\WindowsPowerShell\v1.0

And here is how to add a setting there:

PS> $code = "Write-Host 'Hello, all users, all shells'"
PS> Add-Content $PSHOME\profile.ps1 $code
PS>

Note that, because you are modifying a file in the system folder, you have to run the preceding
code with administrator credentials and elevated privileges (if running under Windows Vista).

Deshev_940-3C11.fm Page 223 Thursday, January 10, 2008 2:56 PM

224 CH AP T E R 1 1 ■ T HE SH E L L E N V IR O N M E N T AN D IT S C ON F I G U R A T I ON

Settings for All Users Using a Specific Shell
To create settings for all users of a specific shell, we again have to place a file in the PowerShell
install folder. This time, the file is named according to the convention <ShellID>_profile.ps1.
In the case of the default shell host, this is Microsoft.PowerShell_profile.ps1. Here is how to
add a setting that will take effect for all users running the default shell host:

PS> $code = "Write-Host 'Hello, all users of Microsoft.PowerShell'"
PS> Add-Content $PSHOME\Microsoft.PowerShell_profile.ps1 $code
PS>

Just like I mentioned before, you will need administrator credentials and elevated privileges
to run the code.

How do we get the ShellID value for an arbitrary shell host? Doing that is as simple as
querying the PowerShell $ShellID variable:

PS> $ShellID
Microsoft.PowerShell

Settings for a Specific User and All Shells
Just like for all users, to store settings for a specific user and all shells, we have to create a
profile.ps1 file. Again, the file location is what matters here. The user-specific file has to
be placed inside a WindowsPowerShell folder that itself resides inside the user Documents
folder. Under Windows Vista, that file should be placed in C:\Users\<UserName>\Documents\
WindowsPowerShell. For earlier versions of Windows, like Windows XP, the WindowsPowerShell
folder will be placed inside the My Documents folder. Here is how to add a setting for all shells for
the specific user:

PS> $code = "Write-Host 'Hello, Hristo, all shells'"
PS> $userProfileDir = "C:\Users\Hristo\Documents\WindowsPowerShell"
PS> Add-Content $userProfileDir\profile.ps1 $code
PS>

This time, we are modifying a user-specific file, and we do not need administrator privileges.

Settings for a Specific User and a Specific Shell
Code that should run for a specific shell should be placed in a <ShellID>_profile.ps1. To make it
user specific, we have to save the file inside the WindowsPowerShell folder in the user’s Documents
folder that I mentioned in the previous section. For my user account on Windows Vista, the file
path is C:\Users\Hristo\Documents\WindowsPowerShell\Microsoft.PowerShell_profile.ps1.
PowerShell offers a shortcut to get to this path—the $profile variable:

PS> $profile
C:\Users\Hristo\Documents\WindowsPowerShell\Microsoft.PowerShell_profi
le.ps1
PS>

Deshev_940-3C11.fm Page 224 Thursday, January 10, 2008 2:56 PM

CH AP T E R 1 1 ■ T HE SH E L L E N V IR O N M E N T AN D IT S C ON F I G U R A T I ON 225

Let’s now add some configuration code there:

PS> $code = "Write-Host 'Hello, Hristo, Microsoft.PowerShell shell'"
PS> Add-Content $profile $code
PS>

The preceding examples use Add-Content as the easiest way to add some code to our
profile script files. That operation will not have to be called often and does not need to be
scripted from within PowerShell. It is best if you use a text editor like notepad.exe to open those
files and add your code that way.

Now that we have added all sorts of configuration code, my shell spews four startup messages.
Figure 11-3 shows the shell window at startup.

Figure 11-3. PowerShell executing startup code from various profile scripts

You might be asking, “What is really the point of having four possible locations for saving
your shell profile code?” The all-users profile scripts are useful from a system administration
point of view; being able to push common shell settings to all users can be extremely useful for
administrators. I really like the idea of being able to have host-specific configuration code, too.
I like to have a visual distinction for the various shells that I run, as that minimizes my time
looking at error messages caused by me typing stuff in the wrong shell window. I usually color-
code different hosts’ text or background, so that my brain knows that a given command goes in
the red text console window, for example. PowerShell does that too—the default shell has a
blue background when run with elevated privileges on Windows Vista, so you immediately
know that commands you run there may have more destructive consequences than usual.

Deshev_940-3C11.fm Page 225 Thursday, January 10, 2008 2:56 PM

226 CH AP T E R 1 1 ■ T HE SH E L L E N V IR O N M E N T AN D IT S C ON F I G U R A T I ON

Working with Saved Console Settings
PowerShell can be extended with custom snap-ins. A snap-in is a .NET assembly, usually a DLL
file, that contains cmdlets and/or providers. There are a lot of useful extensions on the Internet
already, and some of them have gotten quite popular. The process of using a snap-in involves
two steps:

1. Register the snap-in. This requires administrator credentials and elevated privileges
and is usually done by the snap-in installer.

2. Include the snap-in in the current shell session. Before using cmdlets or providers from
a snap-in, users must use the Add-PSSnapIn cmdlet to add the snap-in to the current
shell session.

As an example for including a snap-in, we can add the PSEventing snap-in that contains
the cmdlets for the PowerShell Eventing Library (I will discuss the PowerShell Eventing Library
in detail in Chapter 22). Here is how to add the snap-in:

PS> Add-PSSnapin PSEventing
PS>

We can now confirm that the snap-in was really added to our shell session by calling the
Get-PSSnapIn cmdlet:

PS> Get-PSSnapin

Name : Microsoft.PowerShell.Core
PSVersion : 1.0
Description : This Windows PowerShell snap-in contains Windows PowerSh
 ell management cmdlets used to manage components of Wind
 ows PowerShell.

Name : Microsoft.PowerShell.Host
PSVersion : 1.0
Description : This Windows PowerShell snap-in contains cmdlets used by
 the Windows PowerShell host.

Name : Microsoft.PowerShell.Management
PSVersion : 1.0
Description : This Windows PowerShell snap-in contains management cmdl
 ets used to manage Windows components.

Name : Microsoft.PowerShell.Security
PSVersion : 1.0
Description : This Windows PowerShell snap-in contains cmdlets to mana
 ge Windows PowerShell security.

Deshev_940-3C11.fm Page 226 Thursday, January 10, 2008 2:56 PM

CH AP T E R 1 1 ■ T HE SH E L L E N V IR O N M E N T AN D IT S C ON F I G U R A T I ON 227

Name : Microsoft.PowerShell.Utility
PSVersion : 1.0
Description : This Windows PowerShell snap-in contains utility Cmdlets
 used to manipulate data.

Name : PSEventing
PSVersion : 1.0
Description : PowerShell Eventing Library 1.0

The list starts with the PowerShell built-in snap-ins, and at the end, we see our PSEventing
addition. Now comes the tricky part—we have to issue that Add-PSSnapIn call every time we
start a new PowerShell session. One way to get rid of that nuisance is to add the code to our
profile script. Another is to export the shell configuration; PowerShell can load that configura-
tion on startup and restore the included snap-ins.

So, how do we export the shell configuration? We have to use the Export-Console cmdlet.
It will generate a configuration file that we can use later. Console settings files, by convention,
have the PSC1 file extension. Finally, here is how to export our console settings:

PS> Export-Console C:\PowerShell\PSEventing.psc1
PS>

Console configuration files are very readable XML files. Here is what our configuration
looks like:

<?xml version="1.0" encoding="utf-8"?>
<PSConsoleFile ConsoleSchemaVersion="1.0">
 <PSVersion>1.0</PSVersion>
 <PSSnapIns>
 <PSSnapIn Name="PSEventing" />
 </PSSnapIns>
</PSConsoleFile>

Now, whenever we want to have a shell that has the PSEventing snap-in included, we have
to run PowerShell passing that configuration file as the –psconsolefile parameter. Here is how
to start PowerShell from within cmd.exe:

C:\>PowerShell.exe -psconsolefile C:\PowerShell\PSEventing.psc1
Windows PowerShell
Copyright (C) 2006 Microsoft Corporation. All rights reserved.

PS C:\> Get-PSSnapin PSEventing

Name : PSEventing
PSVersion : 1.0
Description : PowerShell Eventing Library 1.0

As you can see, our snap-in has been included, and we can use its cmdlets right away. As a
convenience feature, once PowerShell installs on your system, it will associate .psc1 files with
Windows so that double-clicking them will open a shell that uses the respective configuration.

Deshev_940-3C11.fm Page 227 Thursday, January 10, 2008 2:56 PM

228 CH AP T E R 1 1 ■ T HE SH E L L E N V IR O N M E N T AN D IT S C ON F I G U R A T I ON

I usually keep shortcuts to several configuration files on my desktop that start the appropriately
configured shell when I need it.

Unfortunately, PowerShell saves only included snap-ins in its configuration files. You have
to save other configuration data on your own. For example, new aliases that you have config-
ured need to be exported independently using the Export-Alias cmdlet and then imported
back using Import-Alias. Please refer to Chapter 6 for additional information on alias export
and import operations.

Changing the Prompt Settings
All shells that I have seen, cmd.exe and UNIX shells included, have a mechanism to change the
prompt string that gets displayed to the user before a command executes. Those shells allow
users to configure the prompt by setting a global or an environment variable. For example, the
cmd.exe default prompt has the PG value, where $P makes the shell print the current drive and
path and $G prints the greater-than, or >, sign. The documentation lists several other options,
all starting with a dollar sign, that one can use. UNIX shells, such as bash, offer a lot more options,
but in essence, the approach is the same, including options and literal strings in a global variable.
This approach has several disadvantages:

• It is hard to understand and document, as setting the prompt string requires that the
user learn a whole new language in order to configure the shell prompt.

• The mechanism is not extensible at all. There is no way to insert a string that will vary
according to a custom condition if the shell designers have not thought about it.

The PowerShell designers have elegantly removed those obstacles by choosing to configure
the shell prompt through a global function. Users can redefine that function and return what-
ever prompt string they want. This way, the prompt gets extended with PowerShell’s own script
language instead of using a custom language. In addition, this mechanism is very extensible, as
the return value can depend on anything we can implement with PowerShell.

Let’s start our prompts adventure by looking at the default prompt value. We get that by
looking at the prompt function definition:

PS C:\> (dir Function:\Prompt).Definition
'PS ' + $(Get-Location) + $(if ($nestedpromptlevel -ge 1) { '>>' }) + '> '
PS C:\>

As you can see, we get the “PS” string, followed by the current path as returned by the
Get-Location cmdlet. The prompt ends with the > sign and it optionally contains >> if we are
inside a nested prompt. Nested prompts are special prompts that indicate to the user that she
is in the middle of typing a complex command, say a function body, and something more is
expected to finish the command (in the function body example, that would be a closing brace).

Let’s now try to build a prompt that contains the current user name. To get the current
user, we will use the .NET framework API that will return the current Windows identity object.
We will wrap that in a function and call it Get-User. Here is the code:

Deshev_940-3C11.fm Page 228 Thursday, January 10, 2008 2:56 PM

CH AP T E R 1 1 ■ T HE SH E L L E N V IR O N M E N T AN D IT S C ON F I G U R A T I ON 229

PS> function Get-User
{
 [System.Security.Principal.WindowsIdentity]::GetCurrent()
}

PS> Get-User

AuthenticationType : NTLM
ImpersonationLevel : None
IsAuthenticated : True
IsGuest : False
IsSystem : False
IsAnonymous : False
Name : NULL\Hristo
Owner : S-1-5-21-2505111388-2288116029-638358836-1000
User : S-1-5-21-2505111388-2288116029-638358836-1000
Groups : {S-1-5-21-2505111388-2288116029-638358836, , , ..
 .}
Token : 3176

Let’s now build our prompt that will contain the user name and the current folder followed
by a > symbol and a space:

PS> function prompt
{
 $user = (Get-User).Name
 $path = Get-Location
 "[$user] $path> "
}

[NULL\Hristo] C:\>

We can use our user object and configure a prompt similar to the de facto standard for
many UNIX shells, one that ends with a pound sign (#) if the user is a computer administrator
and a dollar sign ($) otherwise. To determine if the user is an administrator, we will get the
current Windows principal for the user and check if he belongs to the administrators group.
We will wrap that in the Is-Administrator function that uses Get-User:

PS> function Is-Administrator
{
 $user = Get-User
 $principal = New-Object `
 Security.principal.windowsprincipal($user)
 $principal.IsInRole("Administrators")
}

Deshev_940-3C11.fm Page 229 Thursday, January 10, 2008 2:56 PM

230 CH AP T E R 1 1 ■ T HE SH E L L E N V IR O N M E N T AN D IT S C ON F I G U R A T I ON

PS> Is-Administrator
False

Now that we have this tool, we can write our prompt function. Here it comes:

PS> function prompt
{
 $path = Get-Location
 $terminator = '$'
 if ((Is-Administrator))
 {
 $terminator = "#"
 }
 "$path $terminator "
}

C:\ $

Note how the prompt changes to C:\ $. It looks like C:\ # in a shell run with administrator
credentials.

As bad as side effects that modify the environment can be when caused by a function that
is simply supposed to return a value, we can use them in our prompt function to create a richer
prompt. The first thing we can do is use color in our prompt. To do that, we have to write the
string to the console ourselves and return an empty string, so that the shell does not add anything.
Here is a prompt function that prints the prompt in yellow:

PS> function prompt
{
 Write-Host ("$(get-location)>") -nonewline `
 -foregroundcolor Yellow
 return " "
}

We can combine the window manipulation capabilities of the $host.UI.RawUI object with
prompt evaluation. One of the most interesting ideas floating on the Internet is the way to
shorten your prompt string by moving some of the information to the console window title.
One of the things that annoy users is seeing long paths that cause the prompt string to get
longer than a line and even wrap. We can solve this problem by moving the current path to the
window title. This frees up physical space in the prompt string area, and we can list the user
name there. Here is our prompt function that does that:

function prompt
{
 $user = (Get-User).Name
 $path = Get-Location
 $host.UI.RawUI.WindowTitle = $path
 "[$user]> "
}

Deshev_940-3C11.fm Page 230 Thursday, January 10, 2008 2:56 PM

CH AP T E R 1 1 ■ T HE SH E L L E N V IR O N M E N T AN D IT S C ON F I G U R A T I ON 231

Figure 11-4 shows the end result: the current path stays in the window title, and the user
name is the only thing in the prompt.

Figure 11-4. A console window showing the current path in the title bar

In conclusion, keep in mind that if your prompt function throws an exception, PowerShell
will default to the PS> prompt and will not warn you in any way. To get the real error message,
call the prompt function yourself. Here is an example:

PS> function prompt
{
 something broken here
}

PS>prompt
The term 'something' is not recognized as a cmdlet, function, operable
 program, or script file. Verify the term and try again.
At line:3 char:14
+ something <<<< broken here

Tab Expansion: How Command Completion Works
Many UNIX shells and cmd.exe have provided file name completion for quite some time. Again,
they did it in a way that reminds me of Henry Ford’s saying about Model T car colors—customers
can have a car painted any color, so long as it is black. PowerShell goes beyond the uncustomi-
zable completion mechanisms of other shells by using the same approach as with prompt strings—
it does its customizations through a global function that can extend tab completion. By default,
in addition to file names, hitting the Tab key will complete cmdlet names, cmdlet parameters,

Deshev_940-3C11.fm Page 231 Thursday, January 10, 2008 2:56 PM

232 CH AP T E R 1 1 ■ T HE SH E L L E N V IR O N M E N T AN D IT S C ON F I G U R A T I ON

variable names, and object properties. We can extend that by defining a global function and
naming it TabExpansion. Let’s first see how the default function looks:

PS> (dir Function:\TabExpansion).Definition

 # This is the default function to use for tab expansi
t handles simple
 # member expansion on variables, variable name expans
nd parameter completion
 # on commands. It doesn't understand strings so strin
ntaining ; | (or { may
 # cause expansion to fail.

 param($line, $lastWord)

 & {
 switch -regex ($lastWord)
 {
 # Handle property and method expansion...
...

I have omitted a good portion of the function code for the sake of brevity, because we are
not really interested in how that code provides completions. As you can probably see from the
param statement, the function receives two parameters: $line holds the entire text line entered
so far, and $lastWord contains the last word only. The $lastWord parameter looks most useful,
as it contains the beginning of the word the user is trying to type. The function should return a
collection of values with possible completions that the shell will loop over and offer each of
them to the user as he presses the Tab key.

Let’s try to build something useful. PowerShell does not offer completions on executable
names that are in our system PATH. We can fix that by collecting all executable names and
writing a better TabExpansion function that will complete them. To make matters simple and
short, we will get the executables inside the C:\Windows\System32 folder; all network-related
executables that we often use most, like ping.exe, are located there. The code gets a bit longer,
and we will save it in a separate file, TabExpand-Utils.ps1. Here is our first version of the expan-
sion function:

#cache the executables to speed up things
$global:systemExes = (dir $env:windir\system32*.exe) |
 foreach {$_.Name}

function global:TabExpansion($line, $lastWord)
{
 $result = @()
 #provide expansions for the executables in C:\windows\system32

Deshev_940-3C11.fm Page 232 Thursday, January 10, 2008 2:56 PM

CH AP T E R 1 1 ■ T HE SH E L L E N V IR O N M E N T AN D IT S C ON F I G U R A T I ON 233

 foreach ($exe in $systemExes)
 {
 if ($exe -match "^$lastWord")
 {
 $result += $exe
 }
 }

 return $result
}

The code needs some explanation. First, the System32 folder contains a lot of files, and getting
the list of executables from it is a slow operation. That is why we collect the executable files stored
there only once and keep the result in a global variable, $global:systemExes. Our TabExpansion
function is declared as global too—we need that to overwrite the default TabExpansion function.
The function code loops over all items and checks if they start with the string supplied as the
$lastWord parameter. We check that by constructing a regular expression on the fly using the
"^$lastWord" expression to denote that the string starts with the one inside $lastWord. If the
regular expression matches, that is, if our last word starts with the same character sequence as
the current executable name, we add that name to the $result collection using the += operator.
At the end, we return the possible completions that have been accumulated in $result. As a
result, words like “pin” get completed to PING.EXE:

PS> .\TabExpand-Utils.ps1
PS> PING.EXE

There is a problem with this approach, though. We lose the default tab expansion by over-
writing the default TabExpansion function. The easiest way to preserve that is to get the function
definition as you saw previously and paste it in our script. This is a bad solution though. What
if we need to augment a tab expansion solution that somebody else has implemented? Or what if
the next version of PowerShell is incompatible with the default tab expansion code; the next
version will contain a new fixed default, but our saved version will break. The solution is to get
the default TabExpansion function’s script block before overwriting the function and calling the
old implementation from our code. Restart your shell session, so that you get back the original
TabExpansion function, and try the updated version of our code:

#save original TabExpansion function call
$global:originalExpansion = (dir Function:\TabExpansion).ScriptBlock
#cache the executables to speed up things
$global:systemExes = (dir $env:windir\system32*.exe) |
 foreach {$_.Name}

function global:TabExpansion($line, $lastWord)
{
 $result = @()
 #call the original tab expansion
 $result += &$originalExpansion $line $lastWord

Deshev_940-3C11.fm Page 233 Thursday, January 10, 2008 2:56 PM

234 CH AP T E R 1 1 ■ T HE SH E L L E N V IR O N M E N T AN D IT S C ON F I G U R A T I ON

 #provide expansions for the executables in C:\windows\system32
 foreach ($exe in $systemExes)
 {
 if ($exe -match "^$lastWord")
 {
 $result += $exe
 }
 }

 return $result
}

The difference is in two lines: initializing the $originalExpansion global variable to the
script block of the original tab expansion function and then calling that script block with the
same $line and $lastWord parameters that we got from PowerShell. This way, we obtain the
default completions first before adding our own. As a result, we got our variable name comple-
tion back:

PS> .\TabExpansion-Utils.ps1
PS> $PROFILE

For details on working with script blocks and functions, please refer to Chapters 4 and 5,
respectively.

Unfortunately, by defining our own tab expansion mechanism, we seem to lose comple-
tions for files in the current folder and completions for cmdlet names. It looks like the shell
does complete those names automatically when it detects that the tab expansion has not been
overwritten. Fortunately, we can get those completions back by reimplementing them with
two loops similar to the one we set up for the system executables. Our code will get somewhat
longer, but it will contain three similar loops that hopefully are not too hard to understand.
Here is the final version of our function:

#save original TabExpansion function call
$global:originalExpansion = (dir Function:\TabExpansion).ScriptBlock
#cache the executables to speed up things
$global:systemExes = (dir $env:windir\system32*.exe) |
 foreach {$_.Name}

function global:TabExpansion($line, $lastWord)
{
 $result = @()
 #call the original tab expansion
 $result += &$originalExpansion $line $lastWord

 #get items in the current location and provide expansions
 $currentLocationItems = Get-ChildItem * | foreach { $_.Name }
 foreach ($item in $currentLocationItems)
 {

Deshev_940-3C11.fm Page 234 Thursday, January 10, 2008 2:56 PM

CH AP T E R 1 1 ■ T HE SH E L L E N V IR O N M E N T AN D IT S C ON F I G U R A T I ON 235

 if ($item -match "^$lastWord")
 {
 $result += ".\$item"
 }
 }

 #get registered cmdlets and aliases and provide expansions
 $commands = (Get-Command -type Alias) + `
 (Get-Command -type Cmdlet) |
 foreach { $_.Name }
 foreach ($command in $commands)
 {
 if ($command -match "^$lastWord")
 {
 $result += $command
 }
 }

 #provide expansions for the executables in C:\windows\system32
 foreach ($exe in $systemExes)
 {
 if ($exe -match "^$lastWord")
 {
 $result += $exe
 }
 }

 return $result
}

We have added two loops that go over the child items for the current location and over all
commands. We get the command names with the Get-Command cmdlet; we call it twice to get
the aliases and cmdlets and merge the results into one collection using the + operator. The
three loops follow the same pattern: test if the current item starts with the characters entered
as the $lastWord and, if so, add the item to the $result collection.

Summary
This chapter introduces the important concepts of shell hosts and custom shells. Providing
facilities for easily embedding scripts in various programs is the key feature behind PowerShell
that makes it the new system administration tool of choice for many products and solutions. We
have gone through the mechanisms that the shell uses to interact with its host and the services
the shell host offers to scripts and cmdlets. After that short introduction to the shell environ-
ment, we went on to explore how we can configure the most popular of the shell’s settings.

The last two sections of the chapter, which deal with prompt strings and tab completions,
showed some really advanced customizations. Digging into the harder stuff like tab expansion
can be a daunting task at first, but as you saw, it can be simplified to something manageable.

Deshev_940-3C11.fm Page 235 Thursday, January 10, 2008 2:56 PM

236 CH AP T E R 1 1 ■ T HE SH E L L E N V IR O N M E N T AN D IT S C ON F I G U R A T I ON

Even if it looks hard, tab expansion customization can tremendously boost your productivity
on the command line and is worth looking into. Later, in Chapter 23, we will look into an open
source project called PowerTab that customizes tab expansion using the mechanism outlined
in this chapter to provide completions for stuff that we had not even thought was possible.

Deshev_940-3C11.fm Page 236 Thursday, January 10, 2008 2:56 PM

237

■ ■ ■

C H A P T E R 1 2

Extending the Type System

In Chapter 1, we barely scratched the surface of the PowerShell type system. We discussed
how the built-in object adapters and type extensions work together to decorate existing types
coming from all sources. The extended type system is not only an extension to standard .NET,
COM, and WMI object types but open for further extension by anyone. We can use it to add
properties and members to a live object or modify the type definition so that all objects of that
type automatically get the new members. We can add some pretty crazy customizations to the
environment by being able to attach custom properties and methods to objects that we use
daily. Before learning how to modify objects and types, I used to create a lot of small utility
functions that performed frequent operations on objects. I had to use a prefix or a suffix as a
part of the function name just to remember what objects it worked on. No more! I have moved
all those tiny functions to methods that extend the types in question. I now have shorter names
to type and fewer function names to remember.

PowerShell sports a very sophisticated system for turning binary objects into properly
formatted text. It allows us to turn a collection of objects into a table, a list, and much more, so
that it is easier to read on the screen. The text formatting system has several view types, and it
allows us to define custom views that convert an object and its property values into text in the
format that we need for a repetitive task. In this chapter, I will go over some of the default view
types, and you will learn how to create your own custom views to use and reuse for generating
different types of reports.

Modifying Objects and Types
As we already discussed in Chapter 1, a PowerShell object is a complex animal. Whenever you
get an object instance, you do not really manipulate the original object no matter where it is
coming from: .NET, COM, WMI, or elsewhere. All objects in PowerShell are really instances of
the PSObject type or its inheritors. The PSObject type is the basis—the foundation of the extended
type system. It is implemented as an object wrapper, and it holds a reference to the real object.
The operations that we perform on the real object all go through the PSObject instance, where
they can be intercepted and manipulated by the type system. This allows for exposing func-
tionality by adding properties and methods that are not present in the original object. Of course,
the opposite is also true: some of the properties and methods on the original object may remain
hidden from the script user.

Deshev_940-3C12.fm Page 237 Thursday, January 10, 2008 2:58 PM

238 CH AP T E R 1 2 ■ E X T E N D IN G T HE TY P E SY S TE M

Adding Members to Single Objects
Many script languages keep objects open for modification at all times and allow script authors
to easily get an instance of an object and attach additional properties and methods. In some
languages, like JavaScript, adding a property is as simple as assigning a property value to an
object. If the property is not there, it will be created for us.

PowerShell imposes somewhat stricter rules for adding properties and methods. We can
still add them at will to any PSObject, but we have to use a special cmdlet for that—Add-Member.
That cmdlet is the Swiss Army knife for manipulating objects. Ever wanted to have a FileCount
property on a DirectoryInfo object that contains the number of files located inside the folder?
Here is how to do it:

PS> $currentDir = (Get-Item .)
PS> $currentDir | Add-Member -MemberType ScriptProperty `
-Name FileCount -Value { (dir $this).Count }
PS> $currentDir.FileCount
6

The preceding snippet adds a new member to the $currentDir object. We call that member
a ScriptProperty; it appears as a property to callers and is defined by one or two script blocks.
One of the blocks is executed when a caller retrieves the property value; the other when he or
she sets a new value. Our preceding code snippet defines a read-only property by specifying a
getter script block only.

■Note The $this variable reference is important, because that is how we access the object the property
or method was assigned to. In the DirectoryInfo example, $this refers to our DirectoryInfo object.
PowerShell always uses that variable to pass the current object instance when attaching methods or properties.

The Add-Member cmdlet can modify an object that you pass as the -InputObject parameter.
Piping objects is usually easier to type, and of course, we can pipe more than one object. Here
is how to add the same property to the current folder and the parent one:

PS> $dirs = (Get-Item .), (Get-Item ..)
PS> $dirs | Add-Member -MemberType ScriptProperty `
-Name FileCount -Value { (dir $this).Count }
PS> $dirs | select Name,FileCount

Name FileCount
---- ---------
12 - Extending the Type System 6
Z:\ 28

The Add-Member cmdlet can add all sorts of members; the right one depends on the value of the
-MemberType parameter value. It defines two parameters for passing configuration data: -Value and
-SecondValue. Those two have different uses with respect to the current member type. In this
chapter, we will be working with the following member types:

Deshev_940-3C12.fm Page 238 Thursday, January 10, 2008 2:58 PM

CH AP T E R 1 2 ■ E X T E N D IN G T HE TY P E SY S TE M 239

• AliasProperty: This property refers to another property on the same object. It is typically
used to shorten a property name or to rename a property to make it consistent with other
objects. PowerShell uses this type of property quite extensively. For example, the Process
object has an alias property called WS that points to WorkingSet, and collections have a
Length property that returns their count to make them consistent with arrays.

• NoteProperty: This property type is similar to public fields in other programming languages.
It represents a simple variable storage space that anyone can read from and write to.

• ScriptProperty: This property type gets really close to properties as they are implemented
in .NET. We have to provide script blocks for the getter and setter functionality of the
property. One of them will be called when somebody gets the property value, another,
when he or she sets it.

• ScriptMethod: This member type defines a method by providing a single script block.

EXTENDING EXTERNAL OBJECTS MAY GET TRICKY

Remember that I said that all type extensions must go through PSObject. All object operations go through
PSObject too, so extending an object must not be a problem, right? Well, it turns out that there are rare occa-
sions where we might have some trouble extending an object. Sometimes, we can get a raw reference to a
.NET object, or maybe a WMI one for that matter. We may not immediately detect that we are dealing with a
raw object, but we will know that happened if we try to add a member. Raw objects cannot have additional
members attached to them.

To illustrate that, let’s try to add a ScriptProperty member to a string object that will return the first
word in the string. Here is our first attempt at doing that:

PS> $s = "the quick brown fox"
PS> $s | Add-Member ScriptProperty FirstWord { $this.split()[0] }
PS> $s.FirstWord
PS>

Nothing happens. The script code for the property getter looks correct—it splits the string into words and
gets the first one. The problem is that our code is not called at all. We need to wrap that string in a PSObject before
trying to extend it. To do that, it has to be touched by some other PowerShell operation. We have to use the
Add-Member -PassThru parameter that will make the cmdlet return the modified object and assign the
modified value back to our variable. Piping through the cmdlet will transform the string object into a PSObject
that wraps a string instance. Here is the modified code:

PS> $s = "the quick brown fox"
PS> $s = $s | Add-Member ScriptProperty FirstWord {$this.split()[0]} `
-PassThru
PS> $s.FirstWord
the

You do not need to worry about converting objects to PSObject instances most of the time; any object
returned by a cmdlet is already converted for you. Just have the technique in mind, so that you know how to
find your way out when you get to that raw object.

Deshev_940-3C12.fm Page 239 Thursday, January 10, 2008 2:58 PM

240 CH AP T E R 1 2 ■ E X T E N D IN G T HE TY P E SY S TE M

Creating New Objects

A little-known fact among PowerShell users is that PSObject is a public type and we can create
instances of it. What we get back is an empty object with no methods or properties. What good
is it, then? Well, combined with the power of Add-Member, we can build custom objects. PowerShell
does not offer built-in support for defining classes, methods, and properties, but we can simulate
that support by creating PSObject instances and adding the members we need. This way, we
can encapsulate code that works over the same data in a custom object with its own properties
and methods. Such objects are especially useful when returning data from a reusable function.
This nuisance pops up often. Say we have a function that returns data about different people.
How do we return the first and last names of a person? We can use a Hashtable, but that would
make it inconvenient for the function caller as other cmdlets like sort will be hard to use. The
best solution is to return a collection of objects that have a FirstName and LastName property.

To make creating custom objects easier, and adding members quicker, we will build some
helper functions. We will introduce the abstraction of a class—a single object that knows how
to create instances. Our classes will have a single method, Create(), which will create a new
instance. First, we need a function that will create our class object. We will call it Define-Class
and save it to a library script, Classes-SupportLib.ps1, which we can reuse from other scripts.

The Define-Class function accepts a script block as a parameter—that block will contain
our constructor code. It will create a new PSObject that will represent our class and will attach
a note property containing the constructor. It will then attach the Create() method to invoke
the constructor. Here is the function code:

function Define-Class($constructor)
{
 $class = New-Object PSObject
 $class | Add-Member NoteProperty Constructor $constructor

 $class | Add-Member ScriptMethod Create {
 $instance = New-Object PSObject

 $constructorBlock = $this.Constructor
 $this = $instance
 & $constructorBlock

 return $instance
 }
 return $class
}

There is some tricky code in the Create() method definition. It first creates a new blank object
and then calls the constructor. We need to set the $instance value to the $this variable, so that the
code in the constructor block can refer to the newly created object using the $this variable.

Deshev_940-3C12.fm Page 240 Thursday, January 10, 2008 2:58 PM

CH AP T E R 1 2 ■ E X T E N D IN G T HE TY P E SY S TE M 241

■Note Keep in mind that modifying the $this variable may cause problems, because $this already
points to the class object inside the Create() method. Take extra care when extending this method to save
the $this variable’s original value and restore it after calling the object constructor, if you write code that
needs to access the class object.

Now that we can define classes, let’s see how we can use them. We need to call Define-Class,
store the value that it returns as the class object, and use that object to create instances of our
class. Let’s do that in a demonstration script called Person-Define.ps1. Here is its code:

. .\Classes-SupportLib.ps1

$Person = Define-Class {
 Write-Host "Creating a Person instance"
}

$p = $Person.Create()

■Note The Create() method looks a lot like static methods or methods defined for all objects of a class.
The PowerShell language does not have a statement for creating object instances, and to create objects, we
need a way to simulate the new keyword that you may have seen in other languages like C#, Visual Basic.NET,
or Java. The easiest way to simulate that is to use a static method as our constructor. If you come from a
background in the Ruby programming language, you will be familiar with calling the constructor method
New(); it does the same thing as the Ruby New() constructor method.

Note that the script dot-sources the Classes-SupportLib.ps1 library file. As you can see,
we add a simple Write-Host statement to our constructor block that will indicate that every-
thing went well. Here is the output from our script:

PS> .\Person-Define.ps1
Creating a Person instance
PS>

We can now go ahead and extend our script library with functions that can add properties
and methods to our class. We want to have functions that we call from within the constructor,
so that we encapsulate the entire class definition in a single script block. An additional benefit
to that approach is the fact that we do not need to pass the object instance as a parameter to
functions that add members; we already have it in the $this variable.

We will start with note properties. As we already mentioned, a note property works like a
public field, and we can create a new Add-Field function. It takes two parameters: Name and
Value. Here is the code:

Deshev_940-3C12.fm Page 241 Thursday, January 10, 2008 2:58 PM

242 CH AP T E R 1 2 ■ E X T E N D IN G T HE TY P E SY S TE M

function Add-Field($Name, $Value)
{
 $this | Add-Member NoteProperty $Name $Value
}

Let me stress again that the function must be called from within the class constructor, as
it relies on the $this property being set up for it. We will test our function by calling it from a
different script, Person-NoteProperty.ps1. Here is the script source:

. .\Classes-SupportLib.ps1

$Person = Define-Class {
 Write-Host "Creating a Person instance"

 Add-Field "FirstName" "John"
}

$p = $Person.Create()
$p.FirstName

Here is the output we get from our script:s

PS> .\Person-NoteProperty.ps1
Creating a Person instance
John

We can now go on and add some real code to our object: properties and methods. We will
create two functions: Add-Property and Add-Method. The Add-Method function takes two parameters:
Name and Body. The Body parameter contains a script block with the method body. Add-Property is
similar with the only difference that it takes two script block parameters, Getter and Setter, for
the two operations that a property may support. Here is the code for those two functions:

function Add-Property($Name, $Getter, $Setter)
{
 $this | Add-Member ScriptProperty $Name $Getter $Setter
}

function Add-Method($Name, $Body)
{
 $this | Add-Member ScriptMethod $Name $Body
}

We will be implementing a FullName property that gets or sets both the FirstName and
LastName properties of our Person object. We will also be adding a Greet() method that will
write a string to the console. We will test our new method and property in a different script file,
called Person-All.ps1. Here is the code:

Deshev_940-3C12.fm Page 242 Thursday, January 10, 2008 2:58 PM

CH AP T E R 1 2 ■ E X T E N D IN G T HE TY P E SY S TE M 243

. .\Classes-SupportLib.ps1

$Person = Define-Class {
 Write-Host "Creating a Person instance"

 Add-Field "FirstName" "John"
 Add-Field "LastName" "Smith"
 Add-Property "FullName" `
 {
 "$($this.FirstName) $($this.LastName)"
 } `
 {
 $value = $args[0]
 $words = $value.Split()
 $this.FirstName = $words[0]
 $this.LastName = $words[1]
 }

 Add-Method "Greet" {
 Write-Host "Hello there. I am $($this.FullName)."
 }
}

$p = $Person.Create()
Write-Host "FullName: $($p.FullName)"
Write-Host "Changing LastName to Caulfield"
$p.LastName = "Caulfield"
Write-Host "FullName: $($p.FullName)"
Write-Host "Changing FullName to Shawn Michaels"
$p.FullName = "Shawn Michaels"
$p.Greet()

The most important thing in the preceding code is that we need to use the $args special
variable to extract parameters for our methods and property setters. Named parameters will
not work, and their values will always be $null. Here is the output we get when we run our code:

PS> .\Person-All.ps1
Creating a Person instance
FullName: John Smith
Changing LastName to Caulfield
FullName: John Caulfield
Changing FullName to Shawn Michaels
Hello there. I am Shawn Michaels.

Deshev_940-3C12.fm Page 243 Thursday, January 10, 2008 2:58 PM

244 CH AP T E R 1 2 ■ E X T E N D IN G T HE TY P E SY S TE M

And here is the full code of our Classes-SupportLib.ps1 script library:

function Define-Class($constructor)
{
 $class = New-Object PSObject
 $class | Add-Member NoteProperty Constructor $constructor

 $class | Add-Member ScriptMethod Create {
 $instance = New-Object PSObject

 $constructorBlock = $this.Constructor
 $this = $instance
 & $constructorBlock

 return $instance
 }
 return $class
}

function Add-Field($Name, $Value)
{
 $this | Add-Member NoteProperty $Name $Value
}

function Add-Property($Name, $Getter, $Setter)
{
 $this | Add-Member ScriptProperty $Name $Getter $Setter
}

function Add-Method($Name, $Body)
{
 $this | Add-Member ScriptMethod $Name $Body
}

Creating custom objects has become a lot easier with our script library at hand. We can
include that library in any other library script and use it to generate collections of our own
objects. That should make callers of our scripts much happier.

Adding Members to All Instances of a Class
The Add-Member cmdlet is very powerful, but it has one shortcoming: it can only modify a single
object. We cannot use it to define a property so that it is available to all objects of the same type.
PowerShell has extension methods and properties defined for all objects of a specified type.
How does it do that? The answer lies in the types.ps1xml file that you can find in PowerShell’s
installation folder. The folder is typically located at C:\Windows\System32\WindowsPowerShell\v1.0.
If you open that file and do a quick search for System.Diagnostics.Process, you will find the
following section:

Deshev_940-3C12.fm Page 244 Thursday, January 10, 2008 2:58 PM

CH AP T E R 1 2 ■ E X T E N D IN G T HE TY P E SY S TE M 245

<Type>
 <Name>System.Diagnostics.Process</Name>
 <Members>
 ...
 <AliasProperty>
 <Name>NPM</Name>
 <ReferencedMemberName>NonpagedSystemMemorySize</ReferencedMemberName>
 </AliasProperty>
 <ScriptProperty>
 <Name>Path</Name>
 <GetScriptBlock>$this.Mainmodule.FileName</GetScriptBlock>
 </ScriptProperty>
 ...
 </Members>
</Type>

This is how the extended type system is configured. The types.ps1xml file contains a lot of
entries similar to the preceding one; many of them are about .NET objects, but there are quite
a number of WMI classes too. As you can see from the elements in the XML file, you can define
all sorts of members in a similar manner as you would with the Add-Member cmdlet. When it loads,
PowerShell processes that file and updates its type data. Newly created PSObject instances get
their member lists from that type data.

What can we do with all that XML and how do we put it to good use? Quite often, I find myself
needing security-related information about a file or a number of files: I need the file owner, his
or her primary group, and maybe the access rules defined for the file or inherited from folders
up the directory tree. To get that information, I always have to get the access control list (ACL)
for the file using the Get-Acl cmdlet and extract the info from there. We can implement that as
three ScriptProperty members that we can attach to all FileInfo objects.

The easiest way to add our three properties is to just to find the configuration element for
the FileInfo type and add the new properties: Owner, Group, and AccessRules. That would work,
but it is a pretty messy solution. System configuration files are best left intact; imagine what
would happen if you had to install a new version of PowerShell a year after you modified your
types.ps1xml file? Would you be able to find the exact location of all your changes? Another
major problem is portability. To get your type extensions to another computer, you would have
to find your original edits in your file and then add them to the new machine’s configuration
file. Fortunately, PowerShell offers a better way. The cmdlet that can refresh type configuration
data, Update-TypeData, can include additional XML files. Our solution is to add our type config-
uration data to a separate file and update the shell type configuration with it. We will call our
configuration file FileSecurity.ps1xml, because it extends files with security-related informa-
tion. Here are the contents of the file:

<Types>
 <Type>
 <Name>System.IO.FileInfo</Name>
 <Members>
 <PropertySet>
 <Name>FileSecurity</Name>
 <ReferencedProperties>

Deshev_940-3C12.fm Page 245 Thursday, January 10, 2008 2:58 PM

246 CH AP T E R 1 2 ■ E X T E N D IN G T HE TY P E SY S TE M

 <Name>Name</Name>
 <Name>Owner</Name>
 <Name>Group</Name>
 <Name>AccessRules</Name>
 </ReferencedProperties>
 </PropertySet>
 <ScriptProperty>
 <Name>Owner</Name>
 <GetScriptBlock>
 (Get-Acl $this).Owner
 </GetScriptBlock>
 </ScriptProperty>
 <ScriptProperty>
 <Name>Group</Name>
 <GetScriptBlock>
 (Get-Acl $this).Group
 </GetScriptBlock>
 </ScriptProperty>
 <ScriptProperty>
 <Name>AccessRules</Name>
 <GetScriptBlock>
 (Get-Acl $this).AccessToString
 </GetScriptBlock>
 </ScriptProperty>
 </Members>
 </Type>
</Types>

There is nothing too special there, except for the PropertySet element. It is not required,
but I have added it as a shortcut. I can use its name whenever I need to refer to the properties
and want to retrieve all of them.

■Note ACL access rules are usually acquired via the Access property that returns a collection of
FileSystemAccessRule or RegistryAccessRule objects. They may sometimes get harder to
process, so we use the built-in AccessToString property that yields a readable string representation.

Now, let’s use our new properties. First, we need to update the type configuration by including
our file. To do that, we have to pass its path as the -PrependPath parameter. Here is how to do
that and get one of our properties:

PS> Update-TypeData -PrependPath .\FileSecurity.ps1xml
PS> (dir .\FileSecurity.ps1xml).Owner
NULL\Hristo

Deshev_940-3C12.fm Page 246 Thursday, January 10, 2008 2:58 PM

CH AP T E R 1 2 ■ E X T E N D IN G T HE TY P E SY S TE M 247

PS> (dir .\FileSecurity.ps1xml).Group
NULL\None
PS> (dir .\FileSecurity.ps1xml).AccessRules
BUILTIN\Administrators Allow FullControl
NT AUTHORITY\SYSTEM Allow FullControl
NT AUTHORITY\Authenticated Users Allow Modify, Synchronize
BUILTIN\Users Allow ReadAndExecute, Synchronize

■Note The type configuration will remain in effect until you restart your shell session. If you want to have
those three properties available in all sessions, add the Update-TypeData line to your shell profile script.

Now, let’s see why we needed that PropertySet element in our XML configuration. Property
sets are just an easy way to refer to a number of properties. They are a convenience feature that
allows us to get all properties at once. Here is how to get a view of our security-related proper-
ties by using the select command and passing the name of our property set, FileSecurity:

PS> dir person* | select FileSecurity

Name Owner Group AccessRules
---- ----- ----- -----------
Person-All.ps1 NULL\Hristo NULL\None BUILTIN\Admin...
Person-Define.ps1 NULL\Hristo NULL\None BUILTIN\Admin...
Person-NotePro... NULL\Hristo NULL\None BUILTIN\Admin...

Extending Object Formatting
PowerShell commands work with objects and emit objects. At some time though, those objects
have to be turned into text, so that they can be displayed to the screen or written to a file. This
is what we refer to as object formatting. How is it implemented in PowerShell? The shell designers
have come up with the concept of object views. There are different types of views, and an object
can have many views associated with it. We can explicitly use a specific view type and display
objects as table, list, a wide list, or a custom representation by using one of the formatting cmdlets.
The cmdlets that display an object or objects using specific view settings are, respectively,
Format-Table, Format-List, Format-Wide, and Format-Custom. Each type also has a default view
associated with it, and that view is used to display the object when it is not piped through one
of the formatting cmdlets. For example, let’s display the default view for a list of files:

PS> dir *.ps1

 Directory: Microsoft.PowerShell.Core\FileSystem::Z:\12 - Extending
 the Type System

Deshev_940-3C12.fm Page 247 Thursday, January 10, 2008 2:58 PM

248 CH AP T E R 1 2 ■ E X T E N D IN G T HE TY P E SY S TE M

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 12/10/2007 7:07 PM 693 Classes-SupportLib.ps1
-a--- 12/10/2007 7:38 PM 829 Person-All.ps1
-a--- 12/10/2007 6:53 PM 127 Person-Define.ps1
-a--- 12/10/2007 7:26 PM 181 Person-NoteProperty.ps1

The default view here is the same as the tabular one. Piping the files through Format-Table
generates the same output:

PS> dir *.ps1 | Format-Table

 Directory: Microsoft.PowerShell.Core\FileSystem::Z:\12 - Extending
 the Type System

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 12/10/2007 7:07 PM 693 Classes-SupportLib.ps1
-a--- 12/10/2007 7:38 PM 829 Person-All.ps1
-a--- 12/10/2007 6:53 PM 127 Person-Define.ps1
-a--- 12/10/2007 7:26 PM 181 Person-NoteProperty.ps1

We can format the objects as a list by piping them through Format-List:

PS> dir *.ps1 | Format-List

 Directory: Microsoft.PowerShell.Core\FileSystem::Z:\12 - Extending
 the Type System

Name : Classes-SupportLib.ps1
Length : 693
CreationTime : 12/10/2007 4:38:10 PM
LastWriteTime : 12/10/2007 7:07:28 PM
LastAccessTime : 12/10/2007 4:38:10 PM
VersionInfo :
...

The list output looks more verbose than the table one, but it may be easier to read on some
occasions.

In addition to the list view, we can use the wide list one by piping our objects through
Format-Wide:

PS> dir *.ps1 | Format-Wide

Deshev_940-3C12.fm Page 248 Thursday, January 10, 2008 2:58 PM

CH AP T E R 1 2 ■ E X T E N D IN G T HE TY P E SY S TE M 249

 Directory: Microsoft.PowerShell.Core\FileSystem::Z:\12 - Extending
 the Type System

Classes-SupportLib.ps1 Person-All.ps1
Person-Define.ps1 Person-NoteProperty.ps1

That view tries to generate output that’s as compact as possible, but it may omit some
important information.

The Format-Custom cmdlet will display, by default, a view that is somewhat similar to a
class declaration written in an object-oriented language. It will enumerate all properties and
their subproperties and will generate a lot of output. To reduce the output a bit, we will use
only one file object:

PS> dir .\Classes-SupportLib.ps1 | Format-Custom

class FileInfo
{
 LastWriteTime =
 class DateTime
 {
 DateTime = Monday, December 10, 2007 7:07:28 PM

 ...
 Length = 693
 Name = Classes-SupportLib.ps1
}

Creating Our Own Views
The formatting system shares much in common with the type system. It can be extended using
XML configuration files. The files have an extension of .format.ps1xml and contain view defi-
nitions. As with the type system configuration, the stock views that ship with PowerShell are
located in the shell installation folder. Here they are:

PS> dir $PSHOME*.format.ps1xml

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Windows\System
 32\WindowsPowerShell\v1.0

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 6/30/2007 1:53 PM 22120 Certificate.format.ps1xml
-a--- 6/30/2007 1:53 PM 60703 DotNetTypes.format.ps1xml
-a--- 6/30/2007 1:53 PM 19730 FileSystem.format.ps1xml
-a--- 6/30/2007 1:53 PM 250197 Help.format.ps1xml

Deshev_940-3C12.fm Page 249 Thursday, January 10, 2008 2:58 PM

250 CH AP T E R 1 2 ■ E X T E N D IN G T HE TY P E SY S TE M

-a--- 6/30/2007 1:53 PM 65283 PowerShellCore.format.ps1xml
-a--- 6/30/2007 1:53 PM 13394 PowerShellTrace.format.ps1xm
 l
-a--- 6/30/2007 1:53 PM 13540 Registry.format.ps1xml

Let’s try to create a custom tabular view that displays file security information. We already
know how to get the owner and the file access rules. We can add the name to that and get a
nice-looking table that can help us in our daily security-related tasks. Of course, we would not
want to be modifying any of the system format files just to get our view loaded into the shell
session. We will use the Update-FormatData cmdlet, which works in exactly the same way as
Update-TypeData.

Creating extra views is a rather under-documented feature of PowerShell. That is why the
best way to get started is to take a look at the system views. Since we are now trying to create a
tabular view for files, I have just taken the liberty of opening the FileSystem.format.ps1xml file
that comes from PowerShell and picking a tabular view definition from there. I removed the
unneeded parts and added the three security-related properties. Here is the end result, saved
in the FileSecurity.format.ps1xml file:

<Configuration>
 <ViewDefinitions>
 <View>
 <Name>FileSecurity</Name>
 <ViewSelectedBy>
 <SelectionSetName>FileSystemTypes</SelectionSetName>
 </ViewSelectedBy>
 <GroupBy>
 <PropertyName>PSParentPath</PropertyName>
 <CustomControlName>FileSystemTypes-GroupingFormat
 </CustomControlName>
 </GroupBy>
 <TableControl>
 <TableHeaders>
 <TableColumnHeader>
 <Label>Name</Label>
 <Width>20</Width>
 <Alignment>left</Alignment>
 </TableColumnHeader>
 <TableColumnHeader>
 <Label>Owner</Label>
 <Width>12</Width>
 <Alignment>left</Alignment>
 </TableColumnHeader>
 <TableColumnHeader>
 <Label>AccessRules</Label>
 <Alignment>left</Alignment>
 </TableColumnHeader>
 </TableHeaders>

Deshev_940-3C12.fm Page 250 Thursday, January 10, 2008 2:58 PM

CH AP T E R 1 2 ■ E X T E N D IN G T HE TY P E SY S TE M 251

 <TableRowEntries>
 <TableRowEntry>
 <Wrap/>
 <TableColumnItems>
 <TableColumnItem>
 <PropertyName>Name</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <ScriptBlock>
 (Get-Acl $_).Owner
 </ScriptBlock>
 </TableColumnItem>
 <TableColumnItem>
 <ScriptBlock>
 (Get-Acl $_).AccessToString
 </ScriptBlock>
 </TableColumnItem>
 </TableColumnItems>
 </TableRowEntry>
 </TableRowEntries>
 </TableControl>
 </View>
 </ViewDefinitions>
</Configuration>

A table view definition has three important parts:

• View name: We will use the view name when we instruct Format-Table to format files
using our view.

• ViewSelectedBy: This element defines the types this view applies to. The FileSystemTypes
setting you see there is defined in the FileSystem.format.ps1xml file, and we just reuse
the value here.

• GroupBy: This property will be used to group objects together. When it comes to files and
folders, the PSParentPath property is the best option, as it groups together files and folders
that belong to the same folder.

• TableControl: This is the actual table definition. It contains settings for the table headers
and for the table rows.

Our table has three columns: Name, Owner, and AccessRules. We have used the same script
code to retrieve the column values as we did in our type extension example. Let’s now update
the shell format data with our view definition and try out the view. To use our view, we have
to send some files to the Format-Table cmdlet and specify the view parameter with a value of
FileSecurity:

Deshev_940-3C12.fm Page 251 Thursday, January 10, 2008 2:58 PM

252 CH AP T E R 1 2 ■ E X T E N D IN G T HE TY P E SY S TE M

PS> Update-FormatData -PrependPath .\FileSecurity.format.ps1xml
PS> dir person* | Format-Table -view FileSecurity

 Directory: Microsoft.PowerShell.Core\FileSystem::Z:\12 - Extending
 the Type System

Name Owner AccessRules
---- ----- -----------
Person-All.ps1 NULL\Hristo BUILTIN\Administrators Allow FullCo
 ntrol
 NT AUTHORITY\SYSTEM Allow FullContr
 ol
 NT AUTHORITY\Authenticated Users All
 ow Modify, Synchronize
 BUILTIN\Users Allow ReadAndExecute,
 Synchronize
Person-Define.ps1 NULL\Hristo BUILTIN\Administrators Allow FullCo
 ntrol
 NT AUTHORITY\SYSTEM Allow FullContr
 ol
 NT AUTHORITY\Authenticated Users All
 ow Modify, Synchronize
 BUILTIN\Users Allow ReadAndExecute,
 Synchronize
...

Summary
In this chapter, you have learned how to extend both the type system and the object formatting
system. While extending those two systems may seem like the blackest of PowerShell magic,
doing so can certainly offer significant benefits. Using type extensions, we can create very readable
scripts that are a pleasure to extend and maintain. Formatting extensions can help you create
the right view that will generate that report you need to produce every day. The possibilities are
limitless.

One last word of warning—PowerShell gives us some really powerful tools that can cause
chaos if used all the time without proper judgment. It is easy to turn all your utility scripts into
extension methods, use them all the time, and forget that they are extension methods. You will
learn to depend on those extensions, and that dependence will break your scripts when they
run on other machines that may not have your helper extensions. Be careful in the ways you
extend the system.

Deshev_940-3C12.fm Page 252 Thursday, January 10, 2008 2:58 PM

253

■ ■ ■

C H A P T E R 1 3

Getting Help

Let’s face it—reading a book will not automatically make you an expert on a subject no matter
how good the book is. Going through a good book is like getting a good map that will guide you
through your journey on the road to mastery. The map can help you overcome obstacles and
move faster, but it will not walk the path for you. You will not attain thorough knowledge and
skill until you start doing what you just read about. Of course, there will be hard moments
when you hit those undocumented obstacles and get lost on your journey. This is where your
most important lesson has to kick in—you must know where to look for help and how to explore
the environment, so that you can learn things on your own.

One of PowerShell’s greatest strengths is that it is a fully interactive environment. It is
so consistent in its object orientation that everything is an object, and you can literally grab a
reference to anything—without any regard for whether it is an intrinsic part of the shell, a .NET
object, a COM object or something else—and look at it, its properties, and its methods. Some-
times, the exploration process feels like a role-playing game where you get to stuff maps and all
sorts of other things in your inventory and try to use them everywhere until something clicks
and you make some progress in your quest. Learning a new command or getting help on using
that obscure parameter that you see for the first time is just a matter of poking around with the
help system until you get things working. Our goal for this chapter is to go through the essential
learning tools that can get us out when we are stuck. We will learn how to use the built-in help,
examine objects to get more information about them, explore new commands, and even create
our own helpers that can search the web for additional information.

The Help System
The PowerShell designers seem to have known from the very beginning that if the product was
to be adopted and really used by a large number of people, it had to be easy to learn. Until now,
we have concentrated on the conventions and the descriptive names for all built-in commands
that read like English. Of course, even those can sometimes be difficult and that is why every
command is fully documented. You can get help by calling the Get-Help cmdlet. Get-Help, being a
good cmdlet citizen, returns objects, which may not be the best thing to spew at a novice user.
To make the help text more accessible, PowerShell also provides a help command, which is a
function that just calls Get-Help and pipes its output through the more.com utility so that users
get paging when they read a larger body of text.

Deshev_940-3C13.fm Page 253 Tuesday, January 15, 2008 1:46 PM

254 CH AP T E R 1 3 ■ G E T T IN G HE LP

The Basics
The simplest form of calling for help is typing help at the console prompt. It will list the available
help topics:

PS> help

Name Category Synopsis
---- -------- --------
ac Alias Add-Content
asnp Alias Add-PSSnapin
clc Alias Clear-Content
cli Alias Clear-Item
clp Alias Clear-ItemProperty
clv Alias Clear-Variable
cpi Alias Copy-Item
...

You can provide a wildcard that will filter the topics. For example here is how to display
the language-specific help topics by relying on the fact that their names all start with the
“about_” string:

PS> help about_*

Name Category Synopsis
---- -------- --------
about_Alias HelpFile Using alternate nam...
about_Arithmetic_Ope... HelpFile Operators that can ...
about_Array HelpFile A compact data stru...

You can call help and pass the name of the topic you want displayed:

PS> help ac

NAME
 Add-Content

SYNOPSIS
 Adds content to the specified item(s).
...

The preceding example uses the ac command, which is an alias for the Add-Content cmdlet.
That means that getting help ac is the same as getting help for Add-Content:

PS> help Add-Content

NAME
 Add-Content

Deshev_940-3C13.fm Page 254 Tuesday, January 15, 2008 1:46 PM

C HA P TE R 1 3 ■ G E TT IN G H E L P 255

SYNOPSIS
 Adds content to the specified item(s).
...

PowerShell automatically adds help topics for all aliases that have been declared. This
both saves typing and provides help to users who do not need to know the cmdlet that an alias
points to.

As you might have seen from the previous help topic list, every topic has an associated cate-
gory. To get all category values for the built-in topic, we can use the Get-Help cmdlet. Unlike the
help command, it will return the actual help topic objects. We will pipe the collection through
select and get the unique category values:

PS> Get-Help * | select Category -Unique

Category

Alias
Cmdlet
Provider
HelpFile

There we go—the built-in topics have the following category values:

• Alias: As you have already seen, this is a topic automatically created for all aliases.

• Cmdlet: This is a topic documenting how a cmdlet, either built-in or coming from a third-
party snap-in, works.

• Provider: This topic documents an installed provider. Out of the box, PowerShell ships
with documentation for its built-in providers: Alias, Environment, FileSystem, Function,
Registry, Variable, and Certificate, and a well-behaved custom provider should add
topics to that category.

• HelpFile: This is a concept topic. Those are the about_* topics that discuss specific
language features like branching, looping, variables, and so on.

• Get-Help: This topic can retrieve topics based on the category name. Here is how we can
get the language-specific topics or the ones of the HelpFile category:

PS> Get-Help -Category HelpFile

Name Category Synopsis
---- -------- --------
about_Alias HelpFile Using alternate nam...
about_Arithmetic_Ope... HelpFile Operators that can ...
about_Array HelpFile A compact data stru...
...

Get-Help and help support another important parameter that controls the amount of text
that gets spewed back to you. You can control that using the –detailed, –full, and –examples
switches. Here are the possible configurations:

Deshev_940-3C13.fm Page 255 Tuesday, January 15, 2008 1:46 PM

256 CH AP T E R 1 3 ■ G E T T IN G HE LP

• No switches (the default): You will get a short, about one page long, explanation of what
the command does. It will include a list of the supported parameters, a brief description,
and one or two examples.

• -detailed: You will get a longer explanation that will contain a list of all parameters with
brief descriptions about what every one of them does. You will also get a list of examples
of the command in action.

• -full: This gets you absolutely everything. You will get full information about all the
parameters: if they are required, their possible values, and so on. The list of examples
will contain additional information about each example, including details on what the
code does and how it accomplishes the task at hand.

• -examples: Passing this switch indicates that you need the examples only. You will get
the full text for all examples, including the titles, descriptions, and the sample code. No
other information about the command will be returned.

Parameter Details
Very often, just one of the parameters of a command really interests you. You should not have
to wade through pages and pages of text just to get to the section that interests you. Get-Help
supports the –parameter parameter. You can use it to get help about the specific parameter that
you are trying to use. Here is how to get information about the –filter parameter of the
Get-ChildItem cmdlet:

PS> Get-Help Get-ChildItem -parameter filter

-filter <string>
 Specifies a filter in the provider's format or language. The value
 of this parameter qualifies the Path parameter. The syntax of the
 filter, including the use of wildcards, depends on the provider.
 Filters are more efficient than other parameters, because the prov
 ider applies them when retrieving the objects, rather than having
 Windows PowerShell filter the objects after they are retrieved.

 Required? false
 Position? 2
 Default value
 Accept pipeline input? false
 Accept wildcard characters? True

You get a short description of what the parameter does and a formatted list with the parameter
specification: if it is mandatory (required), its position (if it is a positional parameter), the default
value, if the pipeline input is interpreted as the parameter value and if the parameter supports
wildcards. Let’s try something wild: getting help about the Get-Help cmdlet Parameter parameter:

Deshev_940-3C13.fm Page 256 Tuesday, January 15, 2008 1:46 PM

C HA P TE R 1 3 ■ G E TT IN G H E L P 257

PS> Get-Help Get-Help -parameter Parameter

-parameter <string>
 Displays a detailed description of the specified parameter. These
 descriptions are included in the Full view of help. Wildcards are
 permitted.

 Required? false
 Position? named
 Default value
 Accept pipeline input? false
 Accept wildcard characters? True

I sometimes like to think about PowerShell as self-documenting. As you saw from the
preceding example, we can use wildcards to get information about several parameters. We can
use that to get to all the parameters by providing * as the parameter name:

PS> Get-Help Get-ChildItem -parameter *

-path <string[]>
 Specifies a path to one or more locations. Wildcards are permitted
 . The default location is the current directory (.).

 Required? false
 Position? 1
 Default value <NOTE: if not specified uses the Curr
 ent location>
 Accept pipeline input? true (ByValue, ByPropertyName)
 Accept wildcard characters? True
...

Using wildcards in parameter names comes in very handy when we are not sure about the
parameter name, or we are just feeling lazy and do not want to type the entire word:

PS> Get-Help Get-ChildItem -parameter fo*

-force <SwitchParameter>
 Overrides restrictions that prevent the command from succeeding, j
 ust so the changes do not compromise security. For example, Force
 will override the read-only attribute or create directories to com
 plete a file path, but it will not attempt to change file permissi
 ons.

 Required? false
 Position? named
 Default value False
 Accept pipeline input? false
 Accept wildcard characters? False

Deshev_940-3C13.fm Page 257 Tuesday, January 15, 2008 1:46 PM

258 CH AP T E R 1 3 ■ G E T T IN G HE LP

Advanced Techniques
If you are like me, you love digging deep and finding out how things really work. The PowerShell
help system is far more advanced than just a bunch of text files thrown together that you are
allowed to read. The advanced queries and the wealth of examples and detail you can get on
parameters and other command attributes all speak of an unusual help system. The compiled
HTML help files or *.chm files as most users refer to them, are not up to the challenge of providing
such experience to users. The PowerShell help system relies on another technology that is a
part of the Windows Vista assistive technology. The help contents is stored in an XML-based
file format that was originally called MAML, short for Microsoft Assistive Markup Language,
and was later renamed to just Assistive Markup Language (AML). I will not go into AML details
here but will just show how a typical help file looks.

By convention, PowerShell requires that the help file for a snap-in DLL be named similarly
to the DLL name. This convention should be followed by cmdlet authors, and of course, the built-
in cmdlet DLL’s already follow it. Let’s now look at the help file for the Microsoft.PowerShell.
Management snap-in that contains the cmdlets dealing with files and items. Let’s get the snap-in first:

PS> Get-PSSnapin Microsoft.PowerShell.Management

Name : Microsoft.PowerShell.Management
PSVersion : 1.0
Description : This Windows PowerShell snap-in contains management cmdl
 ets used to manage Windows components.

Where is the .NET assembly, the DLL file, that hosts the cmdlet classes? Let’s get it from the
ModuleName property:

PS> (Get-PSSnapin Microsoft.PowerShell.Management).ModuleName
C:\Windows\System32\WindowsPowerShell\v1.0\Microsoft.PowerShell.Comman
ds.Management.dll

By convention, the name of the help file is Microsoft.PowerShell.Commands.Management.
dll-Help.xml. It is localized and can be found either next to the DLL file or in a subfolder having
the culture name. That setup allows for providing different versions for the same help file,
localized for different cultures. The default en-US version of the help file is inside C:\Windows\
system32\windowspowershell\v1.0\en-US\ on 32-bit Windows Vista machines.

So, what does a typical help file contain? Let’s open the preceding file and take a look at the
documentation for the Add-Content cmdlet. The content is wrapped in a <command:command>
XML tag and looks like this:

<command:command
xmlns:maml="http://schemas.microsoft.com/maml/2004/10"
xmlns:command="http://schemas.microsoft.com/maml/dev/command/2004/10"
xmlns:dev="http://schemas.microsoft.com/maml/dev/2004/10">
 <command:details>
 <command:name>
 Add-Content
 </command:name>

Deshev_940-3C13.fm Page 258 Tuesday, January 15, 2008 1:46 PM

C HA P TE R 1 3 ■ G E TT IN G H E L P 259

 <maml:description>
 <maml:para>
 Adds content to the specified item(s).
 </maml:para>
 </maml:description>
 <maml:copyright>
 <maml:para></maml:para>
 </maml:copyright>
 <command:verb>add</command:verb>
 <command:noun>content</command:noun>
 <dev:version></dev:version>
 </command:details>
 <maml:description>
 <maml:para>The Add-Content cmdlet appends content to a
 specified item or file. You can specify the content by typing
 the content in the command or by specifying an object that
 contains the content.</maml:para>
 </maml:description>
...
</command:command>

Why do we need to look at the XML file? PowerShell works with objects, and Get-Help returns
objects that we can use. Guess what? The objects we get back are constructed from that AML
document, and they are adapted by the XML type adapter. That means we can access any
property we wish, get detailed information, and build queries not directly supported by the
Get-Help cmdlet. Here is how we get the help topic object using Get-Help:

PS> $h = Get-Help Add-Content
PS> $h

NAME
 Add-Content

SYNOPSIS
 Adds content to the specified item(s).
...

Get-Help really does not format any text. It returns MamlCommandHelpInfo objects and the
object formatting infrastructure takes care of the rest. The MamlCommandHelpInfo has an associ-
ated custom formatting view that is defined in the same way we defined our custom object
view in Chapter 12. If you are interested in details about the view definition, review the Help.
format.ps1xml formatting file in the PowerShell installation folder.

Back to AML and help topic properties—let’s get the details and the description for our
Add-Content help topic:

Deshev_940-3C13.fm Page 259 Tuesday, January 15, 2008 1:46 PM

260 CH AP T E R 1 3 ■ G E T T IN G HE LP

PS> $h.details

NAME
 Add-Content

SYNOPSIS
 Adds content to the specified item(s).

PS> $h.description

The Add-Content cmdlet appends content to a specified item or file. Yo
u can specify the content by typing the content in the command or by s
pecifying an object that contains the content.

Need the parameters? No problem:

PS> $h.parameters

 -path <string[]>
 Specifies the path to the items that receive the additional co
 ntent. Wildcards are permitted. If you specify multiple paths,
 use commas to separate the paths.

 Required? true
 Position? 1
 Default value N/A - The path must be specified
 Accept pipeline input? true (ByPropertyName)
 Accept wildcard characters? true

You can get statistics about the parameters or access them by index:

PS> $h.parameters.parameter.length
11
PS> $h.parameters.parameter[4]

-value <Object[]>
 Specifies the content to be added. Type a quoted string, such as "
 This data is for internal use only" or specify an object that cont
 ains content, such as the DateTime object that Get-Date generates.

 You cannot specify the contents of a file by typing its path, beca
 use the path is just a string, but you can use a Get-Content comma
 nd to get the content and pass it to the Value parameter.

Deshev_940-3C13.fm Page 260 Tuesday, January 15, 2008 1:46 PM

C HA P TE R 1 3 ■ G E TT IN G H E L P 261

 Required? true
 Position? 2
 Default value
 Accept pipeline input? true (ByValue, ByPropertyName)
 Accept wildcard characters? false

Why the awkward notation of $h.parameters.parameter? The AML file explains it all. Here
is the parameters declaration:

<command:parameters>
 <command:parameter required="true" variableLength="false"
 globbing="true" pipelineInput="true (ByPropertyName)"
 position="1">
 <maml:name>path</maml:name>
 <maml:description>
 <maml:para>Specifies the path to the items that receive
 the additional content. Wildcards are permitted. If you
 specify multiple paths, use commas to separate the
 paths.</maml:para>

 </maml:description>
 <command:parameterValue required="true"
 variableLength="false">
 string[]
 </command:parameterValue>
 <dev:type>
 <maml:name>string[]</maml:name>
 <maml:uri/>
 </dev:type>
 <dev:defaultValue>
 N/A - The path must be specified
 </dev:defaultValue>
 </command:parameter>
 ...
<command:parameters>

The XML object adapter turns the <command:parameters> tag into a parameters property,
and all the <command:parameter> tags get converted into a collection.

Let’s now look at how examples are stored in an AML file. Here is the first Add-Content
example:

<command:examples>
 <command:example>
 <maml:title>
 -------------------------- EXAMPLE 1 ---------------------

 </maml:title>

Deshev_940-3C13.fm Page 261 Tuesday, January 15, 2008 1:46 PM

262 CH AP T E R 1 3 ■ G E T T IN G HE LP

 <maml:introduction>
 <maml:para>C:\PS></maml:para>
 </maml:introduction>
 <dev:code>add-content -path *.txt -exclude help* -value "
 END"</dev:code>
 <dev:remarks>
 <maml:para>This command adds "END" to all text
 files in the current directory, except for those with file
 names that begin with "help".</maml:para>
 </dev:remarks>
 </command:example>
...
</command:examples>

This means we can access the examples in the same manner that we used for parameters:

PS> $h.examples.example.length
3
PS> $h.examples.example[0]

-------------------------- EXAMPLE 1 --------------------------

C:\PS>add-content -path *.txt -exclude help* -value "END"

This command adds "END" to all text files in the current directory, ex
cept for those with file names that begin with "help".

Being able to access the different help topic subobjects is a very powerful technique. We
can use it to create a script that will search all cmdlet help examples for a specific string or to
get all sorts of examples: Get-/Set-Content examples that work with text files, examples that
work on a range of files using foreach, and so on. Here is one possible implementation of a
sample code search utility:

param ($Name = "*", $Query = { $true })

$topics = Get-Help $Name

foreach ($topic in $topics)
{
 $matchingExamples = $topic.examples.example | where $Query
 if ($matchingExamples)
 {
 #output the found examples
 $matchingExamples
 }
}

Deshev_940-3C13.fm Page 262 Tuesday, January 15, 2008 1:46 PM

C HA P TE R 1 3 ■ G E TT IN G H E L P 263

You can find the code in the Search-Examples.ps1 script. We declare two parameters:
$Name, which is the cmdlet name filter, and $Query, a script block that will be evaluated for every
example and will serve as our criteria for finding examples. Our code gets all help topics that
Get-Help returns given our name filter. It then applies the query script block to all examples
and returns only those that have evaluated to $true. You can read more about script blocks in
Chapter 4 and about the script-block-as-query technique in Chapter 5. Here is how we use our
script to get examples for the Get-Content and Set-Content cmdlets (using the *content* filter)
that works over a collection of files using foreach:

PS> .\Search-Examples.ps1 -Name *content* -Query `
 { $_.code -like "*foreach*" }

-------------------------- EXAMPLE 3 --------------------------

C:\PS>(get-content Notice.txt) | foreach-object {$_ -replace "Warning"
, "Caution"} | set-content Notice.txt

This command replaces all instances of "Warning" with "Caution" in the
 Notice.txt file.

It uses the Get-Content cmdlet to get the content of Notice.txt. The p
ipeline operator sends the results to the ForEach-Object cmdlet, which
 applies the expression to each line of content in Get-Content. The ex
pression uses the "$_" symbol to refer to the current item and the Rep
lace parameter to specify the text to be replaced.
...

Looking at the output returned by the script, you can see that we got back the third example in
the Get-Content cmdlet help topic. This is the only one that uses foreach in its code.

Passing a script block as the query allows for greater flexibility in our search criteria. What
if you forget the name of an example, but you still remember it explained something about a
“notice.txt” file in its remarks? Here’s how you can get that example:

PS> .\Search-Examples.ps1 -Name *content* -Query `
 { $_.remarks -like "*notice.txt*" }

-------------------------- EXAMPLE 3 --------------------------

C:\PS>(get-content Notice.txt) | foreach-object {$_ -replace "Warning"
, "Caution"} | set-content Notice.txt

Deshev_940-3C13.fm Page 263 Tuesday, January 15, 2008 1:46 PM

264 CH AP T E R 1 3 ■ G E T T IN G HE LP

This command replaces all instances of "Warning" with "Caution" in the
 Notice.txt file.

It uses the Get-Content cmdlet to get the content of Notice.txt. The p
ipeline operator sends the results to the ForEach-Object cmdlet, which
 applies the expression to each line of content in Get-Content. The ex
pression uses the "$_" symbol to refer to the current item and the Rep
lace parameter to specify the text to be replaced.
...

Getting Command Information
PowerShell can invoke all types of commands: cmdlets, functions, aliases, script files, external
applications, and even external files that have a registered default action with the windows
shell. The most important tool for working with commands is the Get-Command cmdlet. It provides
information about registered cmdlets, accessible external applications, and files. You can use
it to group related commands and discover new commands that you do not know about. This
is where the PowerShell verb-noun convention shines: if you know a cmdlet that works with a
specific type of object, you can get all commands that have the same noun in their name, which
makes it quite easy to cover all operations about an object. Say, for example, that you know and
use the Rename-Item and Move-Item cmdlets to rename and move files respectively, and you want
to expand your knowledge to cover other operations. Let’s get all cmdlets that work with items:

PS> Get-Command -noun *item*

CommandType Name Definition
----------- ---- ----------
Cmdlet Clear-Item Clear-Item [-Path] <Str...
Cmdlet Clear-ItemProperty Clear-ItemProperty [-Pa...
Cmdlet Copy-Item Copy-Item [-Path] <Stri...
Cmdlet Copy-ItemProperty Copy-ItemProperty [-Pat...
Cmdlet Get-ChildItem Get-ChildItem [[-Path] ...
Cmdlet Get-Item Get-Item [-Path] <Strin...
Cmdlet Get-ItemProperty Get-ItemProperty [-Path...
Cmdlet Invoke-Item Invoke-Item [-Path] <St...
Cmdlet Move-Item Move-Item [-Path] <Stri...
Cmdlet Move-ItemProperty Move-ItemProperty [-Pat...
Cmdlet New-Item New-Item [-Path] <Strin...
Cmdlet New-ItemProperty New-ItemProperty [-Path...
Cmdlet Remove-Item Remove-Item [-Path] <St...
Cmdlet Remove-ItemProperty Remove-ItemProperty [-P...
Cmdlet Rename-Item Rename-Item [-Path] <St...
Cmdlet Rename-ItemProperty Rename-ItemProperty [-P...
Cmdlet Set-Item Set-Item [-Path] <Strin...
Cmdlet Set-ItemProperty Set-ItemProperty [-Path...

Deshev_940-3C13.fm Page 264 Tuesday, January 15, 2008 1:46 PM

C HA P TE R 1 3 ■ G E TT IN G H E L P 265

Now, we have all cmdlets that create, delete, modify, and otherwise amend both items and
subitems. The next logical step is to review the help topics for each of the cmdlets returned.

We can do the same for the cmdlet verb. Let’s get all cmdlets that stop something:

PS> Get-Command -verb *stop*

CommandType Name Definition
----------- ---- ----------
Cmdlet Stop-Process Stop-Process [-Id] <Int...
Cmdlet Stop-Service Stop-Service [-Name] <S...
Cmdlet Stop-Transcript Stop-Transcript [-Verbo...

Now, we know where to look if we want to stop a process or a service. The transcript is a
way to log your console session, so you know how to stop it now, and chances are you already
guess how to start it too—using the Start-Transcript cmdlet.

We can search for cmdlets by name, and that includes both the noun and verb parts. The
Name parameter is the default one, and we do not need to specify it. Let’s now get all commands
dealing with certificates:

PS> Get-Command *certificate*

CommandType Name Definition
----------- ---- ----------
Application Certificate.format.ps1xml C:\Windows\System32\Win...
Cmdlet Get-PfxCertificate Get-PfxCertificate [-Fi...

We got the Get-PfxCertificate cmdlet and an external application, the Certificate.
format.ps1.xml file. You could argue that the Application command type is not suitable for an
XML file; it is not a runnable file anyway. PowerShell uses the Application command type to
denote any file that can be opened by the operating system. That includes executables (real
applications) and files that have a registered Open action with Windows Explorer. Typing the
Certificate.format.ps1xml name at the console will execute its default Windows shell action,
which is opening the file in notepad.exe.

We can use Get-Command to learn more about what happens when we type a specific
command at the console prompt. Here is how to use it to learn about several commands:

PS> Get-Command help

CommandType Name Definition
----------- ---- ----------
Function help param([string]$Name,[st...
Application help.exe C:\Windows\system32\hel...

PS> Get-Command c:

Deshev_940-3C13.fm Page 265 Tuesday, January 15, 2008 1:46 PM

266 CH AP T E R 1 3 ■ G E T T IN G HE LP

CommandType Name Definition
----------- ---- ----------
Function C: Set-Location C:

PS> Get-Command ps

CommandType Name Definition
----------- ---- ----------
Alias ps Get-Process

As you can see, the help command is a function, the C: command that you use to go to the
C: drive is a function too—it calls the Set-Location cmdlet to go to the C: drive. The ps command is
an alias for Get-Process, and there is an external application help.exe in C:\Windows\System32
that we can run if needed.

The Definition property is really useful for external commands. I do not remember how
many times I have wondered where the executable file for a given command resides. No more
of that! Here is how to get the path to several well known Windows utilities:

PS> (Get-Command ping).Definition
C:\Windows\system32\PING.EXE
PS> (Get-Command tracert).Definition
C:\Windows\system32\TRACERT.EXE
PS> (Get-Command calc).Definition
C:\Windows\system32\calc.exe
PS> (Get-Command winword).Definition

Getting Information About Objects
Quite often, we get an unidentified object from a cmdlet or another object. We were in that
situation when we were working with AML objects previously. What can we do to get information
about such objects? The answer is the Get-Member cmdlet. Get-Member lists an object’s members: its
properties, methods, fields, and so on. The easiest way to use it is to just pipe your objects through
the cmdlet. Here is how we get a file item’s properties:

PS> Get-Item test.txt | Get-Member

 TypeName: System.IO.FileInfo

Name MemberType Definition
---- ---------- ----------
AppendText Method System.IO.StreamWriter App...
CopyTo Method System.IO.FileInfo CopyTo(...
Create Method System.IO.FileStream Create()
CreateObjRef Method System.Runtime.Remoting.Ob...

Deshev_940-3C13.fm Page 266 Tuesday, January 15, 2008 1:46 PM

C HA P TE R 1 3 ■ G E TT IN G H E L P 267

CreateText Method System.IO.StreamWriter Cre...
Decrypt Method System.Void Decrypt()
Delete Method System.Void Delete()
Encrypt Method System.Void Encrypt()
...

The output conveniently starts with the object type name and goes on to list the various
members. We can restrict it to showing only properties; these are what we need most often:

PS> Get-Item test.txt | Get-Member -MemberType Property

 TypeName: System.IO.FileInfo

Name MemberType Definition
---- ---------- ----------
Attributes Property System.IO.FileAttributes Attributes {g...
CreationTime Property System.DateTime CreationTime {get;set;}
CreationTimeUtc Property System.DateTime CreationTimeUtc {get;s...
Directory Property System.IO.DirectoryInfo Directory {get;}
DirectoryName Property System.String DirectoryName {get;}
Exists Property System.Boolean Exists {get;}
...

We can get static members too by using the –static switch parameter. Here is how to get
the static properties of the DateTime type:

PS> [datetime] | Get-Member -static -MemberType Property

 TypeName: System.DateTime

Name MemberType Definition
---- ---------- ----------
MaxValue Property static System.DateTime MaxValue {get;set;}
MinValue Property static System.DateTime MinValue {get;set;}
Now Property System.DateTime Now {get;}
Today Property System.DateTime Today {get;}
UtcNow Property System.DateTime UtcNow {get;}

We can pass both a type and an object instance when we need static members; Get-Member
is smart enough to get the type itself:

PS> [datetime]::Now | Get-Member -static -MemberType Property

 TypeName: System.DateTime

Deshev_940-3C13.fm Page 267 Tuesday, January 15, 2008 1:46 PM

268 CH AP T E R 1 3 ■ G E T T IN G HE LP

Name MemberType Definition
---- ---------- ----------
MaxValue Property static System.DateTime MaxValue {get;set;}
MinValue Property static System.DateTime MinValue {get;set;}
Now Property System.DateTime Now {get;}
Today Property System.DateTime Today {get;}
UtcNow Property System.DateTime UtcNow {get;}

We can use Get-Member as a low-cost help browser and get the signature for an object method.
For example, this is how we can verify that the [datetime]::Parse static method accepts a
string parameter and returns a DateTime object:

PS> [datetime] | Get-Member -name Parse -static

 TypeName: System.DateTime

Name MemberType Definition
---- ---------- ----------
Parse Method static System.DateTime Parse(String s), static Sys...

PS> [datetime]::Parse("1/1/2010")

Friday, January 01, 2010 12:00:00 AM

Of course, that is not a substitute for reading the documentation for the .NET object in
MSDN. The next section will show us how to easily get to that.

Using the Internet to Get Help
Quite often, the integrated help is not enough for our needs, particularly if we interact with an
external system that is documented elsewhere. .NET objects are not documented in PowerShell;
their reference material is available on the Microsoft Developer Network (MSDN) web site for
example. Fortunately, PowerShell makes it quite easy to create several global functions that we
can use to open a web browser window and get help about an object.

■Note The Microsoft Developer Network, or MSDN for short, is the Microsoft division responsible for managing
the company’s relationships with software developers. It offers services for distributing software tools, provides a
home for many blogs and several online communities, and hosts huge documentation resources related to
developer tools and products. Many objects we are manipulating with PowerShell are really .NET objects, and those
are documented on the MSDN site. The site start page can be found at http://msdn.microsoft.com.

There are many ways to open a web site from within PowerShell. The most common one
is to launch a browser instance and pass the URL as a command-line parameter. Another

Deshev_940-3C13.fm Page 268 Tuesday, January 15, 2008 1:46 PM

C HA P TE R 1 3 ■ G E TT IN G H E L P 269

approach is to instantiate the Internet Explorer COM object and use its methods to navigate. The
easiest and probably the best way for me is to use the Windows Script Host Shell.Application
COM object and open a URL with its Open() method. This will use the default web browser on
the machine to open the web address. We could have just passed the URL as a command-line
parameter to iexplore.exe, the Internet Explorer executable. We use the Shell COM object as
a courtesy to those who use other browsers, such as Mozilla Firefox. I will cover working with
COM objects in Chapter 20; for now, just know that the function below opens a web browser
window using a COM object that comes installed with Windows.

function Open-Url($url)
{
 $shell = New-Object -ComObject Shell.Application
 if ($url -notlike "http://*")
 {
 $url = "http://" + $url
 }
 $shell.Open($url)
}

For convenience, the function adds an http:// prefix to the URL if it has not been provided by
the user. Here is how we can open the MSDN web site:

PS> Open-Url "msdn.microsoft.com"
PS>

Figure 13-1 shows the result using Mozilla Firefox as the default web browser.

Figure 13-1. The MSDN site opened from within PowerShell

Deshev_940-3C13.fm Page 269 Tuesday, January 15, 2008 1:46 PM

270 CH AP T E R 1 3 ■ G E T T IN G HE LP

The next step is to create a Search-Msdn function that takes a single parameter and opens
it as a MSDN search URL. Here is the code:

function Search-Msdn($query)
{
 $encodedQuery = Encode-Url $query
 Open-Url ("http://search.msdn.microsoft.com/search/" + `
 "Default.aspx?query=$encodedQuery")
}

Passing all sorts of strings in URLs requires that we encode them using a standard URL-
encode algorithm. We do that using the System.Web.HttpUtility .NET class. Here is how we
can wrap it in a function that loads the System.Web assembly and calls the class:

function Encode-Url($inputString)
{
 $null = [Reflection.Assembly]::LoadWithPartialName("System.Web")
 return [Web.HttpUtility]::UrlEncode($inputString)
}

Let’s use the new function to get some help on the String.Split method:

PS> Search-Msdn "String.Split"
PS>

Figure 13-2 shows the result displayed in the browser.

Figure 13-2. The MSDN search results view

Deshev_940-3C13.fm Page 270 Tuesday, January 15, 2008 1:46 PM

C HA P TE R 1 3 ■ G E TT IN G H E L P 271

Since we are working with objects, we often get their type and then search for that. Life
would be a lot easier if we had a function that gets an object and opens the MSDN help page for
its type. We can do that by getting the object type and using it to craft a URL that MSDN under-
stands. Here is our Show-MsdnHelp function:

function Show-MsdnHelp($object)
{
 $typeName = $object.GetType().FullName
 Open-Url "http://msdn2.microsoft.com/en-us/library/$typeName.aspx"
}

Let’s use that function to get information about the objects returned by the Get-Process
cmdlet:

PS> Show-MsdnHelp (Get-Process)[0]
PS>

Figure 13-3 shows the browser window displaying the Process class MSDN help page.

Figure 13-3. The MSDN help page for the System.Diagnostics.Process class

Sometimes using MSDN is not enough, and we need a broader search. Since we are in the
shell window, typing a search term in there to open a browser window to search using the Google
or Live.com search engines would be the quickest solution. Here is how to write a Search-Google
function:

Deshev_940-3C13.fm Page 271 Tuesday, January 15, 2008 1:46 PM

272 CH AP T E R 1 3 ■ G E T T IN G HE LP

function Search-Google($query)
{
 $encodedQuery = Encode-Url $query
 Open-Url "http://www.google.com/search?q=$encodedQuery"
}

Let’s use it to search for a book on Windows PowerShell:

PS> Search-Google '"Pro Windows PowerShell"'
PS>

Figure 13-4 shows the browser window containing the search results.

Figure 13-4. A Google search triggered from within PowerShell

Here is our implementation of the Search-LiveCom function that triggers a Live.com search:

function Search-LiveCom($query)
{
 $encodedQuery = Encode-Url $query
 Open-Url "http://search.live.com/results.aspx?q=$encodedQuery"
}

Let’s try the same search that we did with Google. The result is shown in Figure 13-5.

PS> Search-LiveCom '"Pro Windows PowerShell"'
PS>

Deshev_940-3C13.fm Page 272 Tuesday, January 15, 2008 1:46 PM

C HA P TE R 1 3 ■ G E TT IN G H E L P 273

Figure 13-5. A Live.com search triggered from within PowerShell

You can find the source code for the Internet-related functions in the Help-SearchWeb.ps1
file. It is best to copy and paste them in your shell profile script, so that the commands are
available all the time. For information about modifying your profile configuration, refer to
Chapter 11.

Summary
Gaining access to information in all situations is an invaluable skill and an important tool in
your problem-solving arsenal. This chapter showed how to use the help system to get various
bits of information about the available commands. It then described how to discover new
commands and how to examine live objects and get information about their properties and
methods.

At the end, I showed you how to use the biggest resource of all—the Internet—to get help.
Using the approach outlined in the Search-* functions, you can go on to create functions that
search for answers and code in online forums and script repositories. After all, why bang your
head against a problem when you have the entire Internet at your disposal? Paraphrasing the
old saying, we can go by the maxim, “Good scripters know how to write good code; excellent
scripters use code that has already been written before.”

Deshev_940-3C13.fm Page 273 Tuesday, January 15, 2008 1:46 PM

275

■ ■ ■

C H A P T E R 1 4

Taming Processes
and Services

Processes are like living organisms that inhabit a running operating system. They are the entities
that do all the work—they munch on all the data and pass it to each other. While much work
can be done from within PowerShell only, sooner or later we will have to interact with one of
the processes on our system. All shells provide facilities for managing running programs and so
does PowerShell. Its process and service management facilities can extract information about
processes and manipulate process instances by working directly with objects that represent
them. We have convenient, object-oriented commands that give us great flexibility when extracting
data or modifying state. The combination of the objects representing processes and services
with the object pipeline and that pipeline’s advanced iteration and filtering facilities makes
expressing complex commands easy.

In this chapter, you will learn how to work with processes and their properties. We will
start and stop processes, query them for information, and use them to display statistics. We will
then continue with administering system services. Traditionally, working with processes and
services has been done either manually from the Windows GUI or from complex WMI scripts
written in VBScript or JScript. There is a third option: nonprogrammers can call command line
utilities such as tasklist.exe, taskkill.exe, or sc.exe from batch files to start or stop processes
and services. PowerShell can and will make those three options obsolete by providing a standard,
easy-to-use interface to performing these tasks. Apart from the excellent WMI support that we
will be discussing in Chapter 20, PowerShell provides replacement cmdlets for the WMI-based
solutions that are easier to use and will save us a lot of time.

Working with Processes
All operations related to processes in PowerShell are supported by two cmdlets: Get-Process
and Stop-Process. Here is how to verify that by getting all cmdlets that relate to the Process noun:

PS> Get-Command -Noun Process

CommandType Name Definition
----------- ---- ----------
Cmdlet Get-Process Get-Process [[-Name] <S...
Cmdlet Stop-Process Stop-Process [-Id] <Int...

Deshev_940-3C14.fm Page 275 Tuesday, January 15, 2008 1:25 PM

276 CH AP T E R 1 4 ■ T AM I N G P R O C E SS E S A N D SE R V IC E S

Listing Processes: Getting the Big Picture
Sometimes, our system becomes unresponsive for no apparent reason. The experienced user
usually fires up a task manager instance and starts poking around. Is there a process eating too
much CPU time? Do we have a program that has gone wild and has eaten up all available memory
on our system and is that what is causing the operating system to thrash? The task manager is
a great tool, but it is not very flexible. It just gets us a list of processes and allows us to sort them
on a column like CPU, memory, and so on. PowerShell allows us to quickly craft various reports
about the system using the Get-Process cmdlet and a couple of pipeline tricks. For starters, we
can sort all processes on a property value and display the top offenders. This is how we get the
top five virtual memory users:

PS C:\> Get-Process | sort VM -descending | select -first 5

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 381 10 32224 1132 1505 1932 sqlservr
 267 13 121888 114048 262 12.23 2400 Reflector
 421 18 32196 25148 255 10.42 2804 devenv
 723 6 45700 43232 245 39.06 3176 javaw
 845 41 54884 51696 245 183.05 2680 explorer

Seeing a lot of virtual memory used by a program does not necessarily mean that exactly
that program is causing the system slowdown. To get a more accurate picture, we may need to
examine the working sets by sorting on the WS property:

PS C:\> Get-Process | sort WS -descending | select -first 5

If we suspect thrashing, we can look at the paged and nonpaged memory sizes using the PM
and NPM properties, respectively.

■Note Thrashing is a term that is used to describe the situation where all the physical memory has been
used up, and the system uses virtual memory for further memory allocations. When that reaches a certain
point, the system is kept busy swapping memory pages to disk and to memory, and the system slows almost
to a halt.

We can get all processes that occupy more than 50MB of physical memory. Those types of
operations are so common that PowerShell supports suffixes like KB, MB, GB for number literals.
Here is our query:

Get-Process | where { $_.WS -ge 50MB }

Deshev_940-3C14.fm Page 276 Tuesday, January 15, 2008 1:25 PM

CH AP T E R 1 4 ■ T AM I N G PR O C E SS E S A N D S E R V I CE S 277

Starting and Stopping Processes
All process-related operations in PowerShell involve working with a .NET System.Diagnostics.
Process object. Starting a process is easy—we just have to type the executable name. But how
do we get the Process object instance for that process and interact with it later? One possible
approach is to use Get-Process right after starting it:

PS C:\> notepad
PS C:\> Get-Process notepad

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 54 3 1864 7324 42 0.09 3892 notepad

What if we have more than one Notepad instance running? We can sort them on process
ID, or even better, on the StartTime property. This still does not protect us from the hypothet-
ical situation where a user starts a Notepad instance after we start our instance and before our
Get-Process cmdlet executes, so this is not a good way to get the just-started process. The safest
way is to start the process using the Process.Start() static method, as it will return the newly
created process. Here is how to do it:

PS C:\> $notepad = [Diagnostics.Process]::Start("notepad.exe")
PS C:\> $notepad

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 51 3 1860 7188 42 0.13 2816 notepad

■Tip The PowerShell Community Extensions (PSCX) project solves this problem in the best way possible.
It provides a Start-Process cmdlet that we can use to start a new process and get a reference to it, at the
same time. Please refer to Chapter 21 for additional information on obtaining and installing PSCX.

Stopping a process is easy if we do not care if the process will lose any data. Let me para-
phrase that—killing a process is easy. There are two ways to do it. You can call the Kill method
on the process:

$notepad.Kill()

or pass process instances to the Stop-Process cmdlet, which is appropriately aliased to kill:

Get-Process notepad | Stop-Process

Ending a process gracefully, without it losing data, is a lot harder. We can attempt to do so
by calling the CloseMainWindow method—that will notify the process, and there is good chance
that it will exit normally. If it does not, we can still terminate it. Here is a possible solution that
tries to close a Notepad process, waits two seconds, and then terminates it if it is still running:

Deshev_940-3C14.fm Page 277 Tuesday, January 15, 2008 1:25 PM

278 CH AP T E R 1 4 ■ T AM I N G P R O C E SS E S A N D SE R V IC E S

$notepad = Get-Process notepad

echo "Trying to close the process window..."
$messageSent = $notepad.CloseMainWindow()
sleep 2
if (!$notepad.HasExited)
{
 echo "Forcing process termination."
 Stop-Process -input $notepad
}
else
{
 echo "Process exited gracefully"
}

Unfortunately, CloseMainWindow only returns a value that signals if the method has managed
to send the “Close window” message to the target process. We still have to check if the process
has honored that message and has really exited. We can check that by inspecting the HasExited
property.

Processes and Their Windows
We cannot interact directly with Windows and pass messages around. Well, it may be possible
if we script objects from the System.Windows.Forms .NET namespace, but doing that will not be
easy. The Process class exposes a convenient property, MainWindowTitle, that we can use to
distinguish among several running instances of the same program. Suppose we need to find
the browser that displays the Google search page. Here is a solution that uses a wildcard search
on the window title:

Get-Process iexplore | where { $_.MainWindowTitle -like "*google*" }

Usually, window titles contain document titles, file names, and other important data. That
makes filtering on the MainWindowTitle property a really powerful tool in identifying the right
process.

Another useful GUI-related Process property is Responding, which tells us if the main
window thread is processing messages or, in other words, if the application responds to user
input. We can use this property to get all hung processes and, well, kill them. We do not want
to brutally murder all nonresponding processes, as there is a good chance that some of them
may be doing a CPU-intensive task and will recover any moment. A seemingly good solution is
to get the hung processes, wait for several seconds, and kill those that are still stuck in limbo:

$before = (Get-Process | where {$_.Responding -eq $false})
sleep 5
$after = (Get-Process | where {$_.Responding -eq $false})

Deshev_940-3C14.fm Page 278 Tuesday, January 15, 2008 1:25 PM

CH AP T E R 1 4 ■ T AM I N G PR O C E SS E S A N D S E R V I CE S 279

if (($before -ne $null) -and ($after -ne $null))
{
 diff $before $after -includeEqual |
 where { $_.SideIndicator -eq "==" } |
 foreach { $_.InputObject | Stop-Process }
}

We get the hung processes, wait five seconds, and get them again. We then compare the
two results and kill all processes that are present in both collections. Note the –includeEqual
diff option and the comparison that verifies that a SideIndicator has a value of ==. That
means that the object is present in both collections or the process has failed to recover in
those five seconds.

Process Modules: On What Libraries Does This Baby Depend?
Process modules are a fancy name for all the DLL and EXE files that are loaded in a process’s
memory space. We have two properties on the Process class that help us work with modules:
MainModule and Modules. The main module is usually the EXE file that started the process. The
Modules collection contains all dynamic libraries that have been loaded.

MainModule is a very convenient property, a feature that has been missing in the classic
cmd.exe shell. We can use MainModule to get the path to the executable file. Have you ever tried
looking for PowerShell.exe somewhere in your Program Files folder? I have—before finding
out that it is buried deep below the Windows folder. Here is how you can find out for yourself
where that file lives:

PS C:\> (Get-Process powershell).MainModule.FileName
C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe

You can use the Modules collection to find out on what libraries a process depends. Here is
the start of the list for the Windows calculator:

PS C:\> (Get-Process calc).Modules

 Size(K) ModuleName FileName
 ------- ---------- --------
 184 calc.exe C:\Windows\sys...
 1144 ntdll.dll C:\Windows\sys...
...

Knowing what a specific library does gives us greater insight into how a program works.
We can even generate various reports that find similar programs. For example, we know that all
processes that use mscoree.dll are .NET processes. Here is how to get them:

Get-Process |
foreach { $proc = $_; $proc.Modules |
 where { $_.ModuleName -eq "mscoree.dll" } |
 foreach { echo $proc }
}

Deshev_940-3C14.fm Page 279 Tuesday, January 15, 2008 1:25 PM

280 CH AP T E R 1 4 ■ T AM I N G P R O C E SS E S A N D SE R V IC E S

This is some monster pipeline, and it needs some explanation. The first foreach call iterates
over all processes and gets their modules. We save the current process object in a temporary vari-
able called $proc. We then filter the modules for the process using the where cmdlet to get only
modules that are actually mscoree.dll. If we find any, that will be exactly one module. We pipe
that module through the inner foreach call—we rely on the fact that the foreach script block is
executed only if the where command has returned a matching module. We do not really care
about the module—we just echo the previously saved process. Here is a sample result featuring
Visual Studio .NET (devenv.exe), PowerShell, and Reflector (the .NET code decompiler):

PS C:\> .\DotNetProcesses.ps1

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 421 18 32624 25128 255 12.05 2804 devenv
 758 7 56368 30804 175 34.52 3956 powershell
 267 13 121888 97336 262 12.23 2400 Reflector

Getting Information About a Program’s Publisher
Have you ever found a process with a suspicious name and wondered if it is not the latest
spyware program or virus? It is always best to run a regularly updated antivirus solution, but
just for your research purposes, you can examine the process properties that return the company,
product, and product version. Again, those can be spoofed by a malicious person, and any data
should be taken with a grain of salt. Here is a portion of a tabular report I ran for my processes
today:

PS C:\> Get-Process | select Company,Product,ProductVersion | format-table

Company Product ProductVersion
------- ------- --------------

Microsoft Corporation Microsoft® Visual Studi... 8.0.50727.762
Sun Microsystems, Inc. Java(TM) 2 Platform Sta... 5.0.120.4
Microsoft Corporation Windows Defender 1.1.1505.0
Don HO don.h@free.fr Notepad++ 4.1.2

Setting Process Priority
Raising and lowering process priorities is a task that I do quite often. Installing a huge program
takes time, and I would like to do other work while the installer copies files around. I usually
lower the installer process priority, so that the rest of the applications run smoothly. I raise the
priority back to normal if I am done with other work or just want the installer to finish sooner.

Setting a process’s priority is done by setting the PriorityClass property. It is an enumer-
ation property, so in PowerShell you have to pass a string like “BelowNormal”, “Normal”, and
so on. Here is how we can lower an installer’s (msiexec.exe) priority and get it back to normal
if we wish to:

Deshev_940-3C14.fm Page 280 Tuesday, January 15, 2008 1:25 PM

CH AP T E R 1 4 ■ T AM I N G PR O C E SS E S A N D S E R V I CE S 281

echo "Lowering installer process priorities"
Get-Process msiexec -ErrorAction Stop |
 foreach { $_.PriorityClass = "BelowNormal" }
Read-Host -prompt "Press Enter to restore installer priorities"
Get-Process msiexec -ErrorAction SilentlyContinue |
 foreach { $_.PriorityClass = "Normal" }

The script will restore the priority to “Normal” after the user presses the Enter key. Note
the ErrorAction parameters: initially, we want the script to fail if there are no msiexec.exe
processes running, and we ignore any errors after the wait as the installation may have finished
already. Note that installing software requires administrator privileges, so make sure you run
the script under an administrator account.

Administering Services
When working with services, PowerShell passes around System.ServiceProcess.
ServiceController objects. The simplest way to get those objects for one or many services is to
use the Get-Service cmdlet. When called without parameters, it will return all services registered
on the system. We can use the cmdlet to generate quick reports. For example, this command
will list just the running services:

Get-Service | where { $_.Status -eq "Running" }
Here is what the result looks like:
Status Name DisplayName
------ ---- -----------
Running AeLookupSvc Application Experience
Running Appinfo Application Information
Running AudioEndpointBu... Windows Audio Endpoint Builder
Running Audiosrv Windows Audio
...

We can search for services by name using wildcards. That is very useful in cases where you
do not remember the exact name of a service. Here is how to get the DNS Client service by
getting all services whose names are like the DNS* wildcard:

PS> Get-Service DNS*

Status Name DisplayName
------ ---- -----------
Running Dnscache DNS Client

Another good use for wildcards in service names is when you want to find related services,
as they usually have similar names. Here is how to get all services related to Microsoft SQL
Server by getting all instances that match the *SQL* wildcard:

Deshev_940-3C14.fm Page 281 Tuesday, January 15, 2008 1:25 PM

282 CH AP T E R 1 4 ■ T AM I N G P R O C E SS E S A N D SE R V IC E S

PS C:\> Get-Service *SQL*

Status Name DisplayName
------ ---- -----------
Running MSSQL$SQLEXPRESS SQL Server (SQLEXPRESS)
Stopped MSSQLServerADHe... SQL Server Active Directory Helper
Stopped SQLBrowser SQL Server Browser
Running SQLWriter SQL Server VSS Writer

■Caution Wildcards get applied to the service name, not the display name. That is why a wildcard, such
as SQL*, would not get the main SQL Server service instance—it is called MSSQL$SQLEXPRESS. The same
holds true for the DNS Client service example; note that the actual service name is Dnscache.

Starting and Stopping Services
Windows already provides a console tool that can start and stop services, net.exe, but it is not
the best tool for the job. That program is complex, and it already tries to do too much. For example,
it can even add and remove shared drives. That is why PowerShell provides built-in cmdlets for
starting, stopping, pausing, and resuming services, all of which are pretty straightforward to
use. Starting a service is done with Start-Service:

Start-Service W3SVC

You can do the same by calling the ServiceController Start method:

(Get-Service W3SVC).Start()

Note that changing service status requires administrator privileges. Stopping a service can
be done with the Stop-Service cmdlet:

Stop-Service W3SVC

or the Stop method:

(Get-Service W3SVC).Stop()

Whether you use the cmdlet or object method is purely a matter of preference and conve-
nience. The rest of the service status manipulation cmdlets—Restart-Service, Suspend-Service,
and Resume-Service—work in absolutely the same way.

■Caution Starting, stopping, suspending, and resuming services are all operations that may impact the
system in a serious way, and those operations require administrator privileges. If running on Windows Vista,
make sure that you run the preceding examples in a shell session running with elevated privileges.

Deshev_940-3C14.fm Page 282 Tuesday, January 15, 2008 1:25 PM

CH AP T E R 1 4 ■ T AM I N G PR O C E SS E S A N D S E R V I CE S 283

Configuring Services
PowerShell provides a cmdlet, Set-Service, that allows you to change almost anything about a
service. You can even change the service name and description. I consider this dangerous,
because you run the risk of not being able to find your service a week after renaming it; you may
have valid reasons for doing so. For me, the most important feature of Set-Service is the ability
to change a service’s startup type. Here is how we can prevent the W3SVC service from being
started by changing its startup type to Disabled:

Set-Service W3SVC -startupType Disabled

Making the same service run on every startup is a matter of changing the startup type back
to Automatic:

Set-Service W3SVC -startupType Automatic

A word of caution—we have to be very careful when starting and stopping services and
changing their startup types. Some services are critical for Windows operation and need to be
running all the time; stopping or disabling them may render your system unusable.

Analyzing Service Dependencies
Services often depend on other services. The Services management console snap-in will
display those dependencies, but sometimes, we may need that information from a PowerShell
session or a script. To get that data, we have to read the ServiceController DependentServices
and ServicesDependedOn properties. The former returns services that depend on the current
one, and the latter gets us the services that the current service depends on. Let’s get this infor-
mation for the WMI service, winmgmt:

PS C:\> (Get-Service winmgmt).DependentServices

Status Name DisplayName
------ ---- -----------
Running wscsvc Security Center
Stopped SharedAccess Internet Connection Sharing (ICS)
Running iphlpsvc IP Helper

PS C:\> (Get-Service winmgmt).ServicesDependedOn

Status Name DisplayName
------ ---- -----------
Running RPCSS Remote Procedure Call (RPC)

As you can see, the WMI service depends on the Remote Procedure Call service, while the
Security Center, Internet Connection Sharing, and IP Helper services depend on it.

Deshev_940-3C14.fm Page 283 Tuesday, January 15, 2008 1:25 PM

284 CH AP T E R 1 4 ■ T AM I N G P R O C E SS E S A N D SE R V IC E S

Summary
Most, if not all, of the operations presented in this chapter can be performed using a mixture
of preexisting Windows utilities and/or WMI scripts. PowerShell does nothing revolutionary
here. Its goal is to unify the access to processes and services and creates a homogeneous envi-
ronment that makes scripting a breeze. The cmdlets presented here are easy to learn and master,
and that is the biggest step forward in system administration and automation.

Deshev_940-3C14.fm Page 284 Tuesday, January 15, 2008 1:25 PM

285

■ ■ ■

C H A P T E R 1 5

Input and Output

Data comes in all flavors and formats. It would be great if all systems were using objects, and
PowerShell could use those objects to get data from any system. That is a good thing to strive
for, but unfortunately, it is not the case at all. The good old file continues to reign as the primary
means for communication between heterogeneous systems. All-powerful file formats come
and go, but the only thing that can really get read and written by just about any computer system
on this planet is plain text. We do not need to run a program written for an IBM mainframe ten
years ago on our workstation as long as we can get some of the data that program generates in
text format. Of course, text files will surely have different formats, but the best thing about a
computer-generated text file is that it is generally easy to parse using a computer.

Data generated by programs tends to outlive the programs that created it in the first place.
That is what makes text files attractive—they can be easily transferred from one system to another
and live on after their original creator has long been forgotten. In this chapter, we will delve
into PowerShell’s facilities for working with files. We will be reading different data formats and
generating some data ourselves. I will then show you how to use regular expressions to get the
actual data from the text blob. Let’s get started!

Reading Content
Everything about a file’s content in PowerShell revolves around the two cmdlets Get-Content
and Set-Content. While they can get and set raw binary data, by default, they are oriented
toward working with text. For example, here is how we can use Get-Content to retrieve the text
stored in a sample file called test_people.txt:

PS> Get-Content .\test_people.txt
Michael Johnson
John Smith

Jane Doe

Users with a background in a different programming language may expect that Get-Content
will return a string with the file contents. Not quite—the cmdlet is line oriented and returns an
array of strings, each representing a line from the original text. Here is how to verify that; the
result returned from Get-Content and our file is an array of four strings:

Deshev_940-3C15.fm Page 285 Thursday, January 17, 2008 4:51 PM

286 CH AP T E R 1 5 ■ I N P U T AN D O U T PU T

PS> $content = Get-Content .\test_people.txt
PS> $content.Length
4
PS> $content[0]
Michael Johnson
PS> $content[0..3]
Michael Johnson
John Smith

Jane Doe

As you can see from the preceding code, we have everything already processed for us, and
we can just go over the lines one at a time to get people’s names. That is pretty convenient
when working with files containing lists of items stored one item per line.

Convenient as it may be sometimes, working with line-oriented operations at other times
may be more of a nuisance than a helper. We may need to get the entire text file contents as a
single string, so that we can process it in some other way that is not line oriented. We can do
that by using the static [string]::Join() method that takes an array of strings and joins them
into a single string using a delimiter value. Our delimiter value should be the new line symbol—
but which one? Different systems use different symbols to indicate a line ending: Windows
uses carriage return and line feed (`r`n in PowerShell escape symbols); UNIX systems use just
a line feed (`r); while Macintosh machines use just a carriage return (`n). It is true that Power-
Shell currently runs on Windows only, and we can use `r`n as our new line separator, but it is
best to get the new line symbol from our environment, so that we future-proof our script in
case someday PowerShell runs on one of those systems. To get the new line symbol from the
.NET environment, we need to access the static [System.Environment]::NewLine property. Using
that information, we can create a small utility script, called Get-ContentAsString.ps1, which
can read a file and return its entire contents as a single string. Here is the code:

param ($Path)

$lines = Get-Content -Path $Path
$newLine = [System.Environment]::NewLine

$content = [string]::Join($newLine, $lines)
$content

Here is the result when we run the script on our test_people.txt file and examine the
object that we get as a return value:

PS> $content = .\Get-ContentAsString.ps1 .\test_people.txt
PS> $content.Length
39
PS> $content[0..6]
M
i
c
h
a
e
l

Deshev_940-3C15.fm Page 286 Thursday, January 17, 2008 4:51 PM

C H AP TE R 1 5 ■ IN PU T A N D O U TP U T 287

We get a string containing 39 characters, and the first 7 of those are the characters repre-
senting the string “Michael”.

One of my favorite features of Get-Content’s is that it can target several files. We can pipe
files to it, and it will return their contents. The result is a single collection of lines containing
the combined content of all files. Here is how we can get the contents of all test*.txt files
in the current folder. There are two of them: test_people.txt, which you already saw, and
test_numbers.txt, which contains several numbers, each on a separate line:

PS> dir test*.txt | Get-Content
1
2
3
4
5
Michael Johnson
John Smith

Jane Doe

We can achieve the same result by passing a wildcard as the file path parameter straight to
Get-Content. Here is how to do it:

PS> Get-Content test*.txt
1
2
3
4
5
Michael Johnson
John Smith

Jane Doe

Our Get-ContentAsString.ps1 is a really thin wrapper over Get-Content’s functionality,
and the fact that we pass the $Path parameter straight to the cmdlet allows it to work with wild-
cards too:

PS> .\Get-ContentAsString.ps1 test*.txt
1
2
3
4
5
Michael Johnson
John Smith

Jane Doe

Although this output looks the same as the previous example, it is structurally different.
The example before returns a collection of strings, and this one returns a single string.

Deshev_940-3C15.fm Page 287 Thursday, January 17, 2008 4:51 PM

288 CH AP T E R 1 5 ■ I N P U T AN D O U T PU T

Writing Content
As we already mentioned, Get-Content has a symmetric cmdlet that performs the opposite
action. It is called Set-Content, and it takes two parameters: -Value, which contains the object
to be written to the file, and -Path, which holds the path to the file. The -Value parameter can
be taken from the input pipeline instead of being specified explicitly. I have mentioned that it
contains the object to be written to the file; this can be any object or a collection. If you pass an
object, its built-in ToString() method will be called to get the string representation that will be
stored to the file. If you pass a collection, it will be enumerated and all its members will be treated
in manner that applies for a single object. To see that in action, let’s write two files to a text file:

PS> $files = dir test*.txt
PS> Set-Content -Value $files -Path texts.txt
PS> Get-Content .\texts.txt
Z:\15 - Input and Output\test_numbers.txt
Z:\15 - Input and Output\test_people.txt

You may be guessing what is going on already. The FileInfo objects that we get from the
dir command have their ToString() method return the full path to the file.

You should be aware that the Set-Content cmdlet is destructive by nature. If the file that
we are trying to write to already exists, its entire contents will be overwritten with the new ones.
Be careful when specifying your paths, because Set-Content’s destructive nature may cause
you to lose data.

On many occasions, we want to append some content to an existing file, rather than over-
write it. PowerShell has its Add-Content cmdlet for those cases. It takes exactly the same parameters
as Set-Content, but it will not destroy any content. Here is how we can use the Add-Content
cmdlet to append another file name to our texts.txt file:

PS> dir Get*.ps1 | Add-Content .\texts.txt
PS> Get-Content .\texts.txt
Z:\15 - Input and Output\test_numbers.txt
Z:\15 - Input and Output\test_people.txt
Z:\15 - Input and Output\Get-ContentAsString.ps1

This time, I decided to pipe the dir command result straight to Add-Content. The command
works in absolutely the same way as if the file list has been provided through the -Value parameter.

PowerShell supports two output redirection operators that allow us to save a command’s
output to a file. The > operator will send the current object to a file overwriting its original
contents. Here is how it works:

PS> dir Get*.ps1 > texts.txt
PS> Get-Content .\texts.txt

 Directory: Microsoft.PowerShell.Core\FileSystem::Z:\15 - Input and
 Output

Deshev_940-3C15.fm Page 288 Thursday, January 17, 2008 4:51 PM

C H AP TE R 1 5 ■ IN PU T A N D O U TP U T 289

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 12/10/2007 12:25 AM 148 Get-ContentAsString.ps1

Note that we have lost any of the original content. The >> operator behaves in a manner
similar to > with the only difference being that it does not destroy a file’s previous contents but
appends the data at the end instead. Here is how we can use it to append another file descrip-
tion to our texts.txt file:

PS> Get-Content .\texts.txt

 Directory: Microsoft.PowerShell.Core\FileSystem::Z:\15 - Input and
 Output

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 12/10/2007 12:25 AM 148 Get-ContentAsString.ps1

 Directory: Microsoft.PowerShell.Core\FileSystem::Z:\15 - Input and
 Output

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 12/10/2007 12:21 AM 39 test_people.txt

You can see that the > and >> operators work very similar to Set-Content and Add-Content.
An important difference to note is that the redirection operators pipe the input objects through
PowerShell’s formatting facilities, instead of calling their ToString() methods as Set-Content
and Add-Content do. You can find detailed information about PowerShell’s object formatting
infrastructure in Chapter 12.

Content Encoding
Text is an interesting thing. Computers were invented by people who spoke English, and the
first text formats, like the American Standard Code for Information Interchange (ASCII), used
only a single byte to represent a character. This put a limit on the number of characters that can
be represented. The encoding is suitable to represent the Latin alphabet, but fails completely
for other character sets like Cyrillic, Hebrew, Arabic, Chinese, Japanese, Korean, and so on.
That is why the Unicode Consortium folks have come up with a standard way of encoding text
that should be able to accommodate all character sets.

The PowerShell cmdlets like Get-Content and Set-Content support specifying the encoding
that should be used when reading from or writing to the file through the -Encoding parameter.
Here are the possible values:

Deshev_940-3C15.fm Page 289 Thursday, January 17, 2008 4:51 PM

290 CH AP T E R 1 5 ■ I N P U T AN D O U T PU T

• Unknown: No encoding is used. The content is treated like a normal Unicode string.

• String: This treats content as a Unicode string; it’s the same as Unicode.

• Unicode: The default string format in the .NET framework and PowerShell represents a
Little Endian 16-bit Unicode encoding. See the section about the different Unicode encod-
ings later in this chapter for details on Endianness and byte order.

• Byte: This will return an array of bytes and is suitable for binary manipulation of a file.

• BigEndianUnicode: This value is similar to Unicode but uses Big Endian byte order.

• UTF8: This uses the Unicode Consortium standard UTF-8 encoding.

• UTF7: This uses the Unicode Consortium standard UTF-7 encoding.

• Ascii: This returns file contents in the ASCII encoding that uses 8 bits per character and
is suitable for English text only.

Of the possible values in this list, the most interesting are Byte, Unicode, UTF8, and Ascii, as
they will be the ones you are most likely to use.

Getting Byte Content
The most powerful way to work with a file’s contents is to get it as a byte array. That grants you
the ability to change every single bit in the file and turn it into whatever you wish. Let’s now
save a file as an ASCII character sequence and get its byte values:

PS> "aaaa" | Set-Content -Encoding Ascii -Path ascii.txt
PS> Get-Content .\ascii.txt -Encoding Byte
97
97
97
97
13
10

We are using the sample sequence of “aaaa”, so that we can easily distinguish it in the byte
sequence we get back. As you can see from the results, our file contains 6 bytes: the four “a”
characters plus two characters with the 10 and 13 character codes, respectively. The 10 code
corresponds to the carriage return symbol, and the 13 to the line feed one. We get those two
because Set-Content automatically appends a new line at the end of the file.

■Caution Be careful with the new line that Set-Content automatically inserts for you. For text files, the
line may not be a problem, but the new line can break the file if you need to set the content specifically without
new lines at the end. The only way to set a file’s content without the cmdlet is to use Byte encoding and
provide a byte array with the contents.

Deshev_940-3C15.fm Page 290 Thursday, January 17, 2008 4:51 PM

C H AP TE R 1 5 ■ IN PU T A N D O U TP U T 291

Working with bytes is often easily done when displaying byte values in hexadecimal. In
addition, all documentation about binary data uses hexadecimal. Let’s create a short script
that will help us in formatting the numbers in hex. We will call it Format-AsHex.ps1, and it will
use the -f string format operator to format all numbers that have been piped in hex. Here is
the code:

process
{
 "{0:X}" -f $_
}

Let’s now use it for our ASCII data:

PS> Get-Content .\ascii.txt -Encoding Byte | .\Format-AsHex.ps1
61
61
61
61
D
A

As you can see, the hexadecimal code for the “a” character is 61, the carriage return symbol
is D, and the line feed one is A.

Different Unicode Encodings
Now that we have the tools for looking at binary data, we can see how text is saved under the
different encodings. Let’s start with the .NET-standard Unicode encoding. We will save our
sequence of characters in that encoding and get the file bytes:

PS> "aaaa" | Set-Content unicode.txt -Encoding Unicode
PS> Get-Content .\unicode.txt -encoding Byte | .\Format-AsHex.ps1
FF
FE
61
0
61
0
61
0
61
0
D
0
A
0

According to the standard, Unicode text files should start with a sequence of bytes that
identify the byte order; they are called the byte order mark, or BOM. The BOM is necessary
because some machines represent 2-byte numbers, like the code for the “A” character in the

Deshev_940-3C15.fm Page 291 Thursday, January 17, 2008 4:51 PM

292 CH AP T E R 1 5 ■ I N P U T AN D O U T PU T

0061 form, similar to the normal mathematical notation. Others invert the byte order and
would represent the same character as 6100. The former ordering is called Big Endian, and the
latter is Little Endian. Intel-based machines and the .NET Framework use Little Endian ordering.
The BOM at the beginning of the file contains the number FFFE; according to the standard, that
indicates Little Endian encoding. You can see that the “A” characters are encoded as 6100. .NET
calls that encoding Unicode, and its inverse, BigEndianUnicode.

Let’s now save the same sequence into BigEndianUnicode encoding and take a look at
the bytes:

PS> "aaaa" | Set-Content unicodeBE.txt -Encoding BigEndianUnicode
PS> Get-Content .\unicodeBE.txt -encoding Byte | .\Format-AsHex.ps1
FE
FF
0
61
0
61
0
61
0
61
0
D
0
A

The BOM now contains FEFF, and as you would expect, “A” characters are represented
by 0061.

Both the Unicode and BigEndianUnicode encodings use two bytes per character, and that
makes them a bit wasteful. English characters usually occupy only 1 byte, and the second one
is always zero. The UTF-8 encoding solves that problem by using 1 byte for English characters
and 2 bytes or more for other characters. Let’s now save our letter sequence in UTF8 and take a
peek at the bytes:

PS> "aaaa" | Set-Content utf8.txt -Encoding UTF8
PS> Get-Content .\utf8.txt -encoding Byte | .\Format-AsHex.ps1
EF
BB
BF
61
61
61
61
D
A

The data is a lot more compact now, but what are those three bytes before our four 61 bytes
that represent the “A” characters? That triplet is the so-called UTF-8 BOM sequence. The UTF-8

Deshev_940-3C15.fm Page 292 Thursday, January 17, 2008 4:51 PM

C H AP TE R 1 5 ■ IN PU T A N D O U TP U T 293

format does not suffer from byte order issues, but it can specify a BOM sequence. Programs
usually use it to detect if a text file is encoded using UTF-8.

■Note You may have noticed these three strange symbols on web pages or inside text files: ï»¿ . They are
really the UTF-8 BOM symbols. The EFBBBF byte sequence has a printable representation, and programs that
do not know how to handle UTF-8 usually display those characters to the user.

Now that we know about the different BOM sequences, we can use that knowledge to write
a script that will detect the encoding a text file uses. We will call it Detect-Encoding.ps1, and it
will read the first 3 bytes from a file and compare them against the known BOM values. If it
finds a match, it will print the corresponding encoding name. If it does not, it will assume it is
dealing with an ASCII file. Here is the code:

param ($Path)

$start = Get-Content -Path $Path -Encoding Byte -TotalCount 3

$utf8BOM = "{0:X}{1:X}{2:X}" -f $start
$utf16BOM = "{0:X}{1:X}" -f $start

if ($utf8BOM -eq "EFBBBF")
{
 Write-Host "UTF-8"
 exit
}

if ($utf16BOM -eq "FFFE")
{
 Write-Host "Unicode"
 exit
}

if ($utf16BOM -eq "FEFF")
{
 Write-Host "Big Endian Unicode"
 exit
}

Write-Host "No BOM detected. Encoding is most likely ASCII."

The code passes the -TotalCount parameter to Get-Content in order to get just the first 3
bytes. It formats the 3 bytes as a hex sequence and tests if that sequence is equal to the UTF8 BOM.
If not, it formats the first 2 bytes and compares them to the Unicode and UnicodeBigEndian BOM
sequences. Here is how it works for the test files that we have already generated:

Deshev_940-3C15.fm Page 293 Thursday, January 17, 2008 4:51 PM

294 CH AP T E R 1 5 ■ I N P U T AN D O U T PU T

PS> .\Detect-Encoding.ps1 .\ascii.txt
No BOM detected. Encoding is most likely ASCII.
PS> .\Detect-Encoding.ps1 .\unicode.txt
Unicode
PS> .\Detect-Encoding.ps1 .\unicodeBE.txt
Big Endian Unicode
PS> .\Detect-Encoding.ps1 .\utf8.txt
UTF-8

■Note The home site of the Unicode Consortium is located at http://www.unicode.org/. The site
hosts the entire Unicode standard specification. The standard is the definitive reference on the subject, but it
may get a bit lengthy and hard to read. For an excellent introduction on the subject of text encodings, you can
read Joel Spolsky’s “The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About
Unicode and Character Sets (No Excuses!)” article available at http://www.joelonsoftware.com/
articles/Unicode.html. Do not get intimidated by the article’s subject—it really does not require any
programming experience to get the concepts.

Extracting Data from Text
The text data that we get our hands on is rarely in the format we need. As a contrived example,
take the string in our test_numbers.txt file. How do we extract the numbers from a string that
contains numbers separated by whitespace and other separators? How do we locate the correct
position in the string and extract the digit portion only? The answer is regular expressions.

■Note For more information on regular expressions, you can visit the excellent online resource that is the
http://www.regular-expressions.info site and go through its tutorials and references on the
subject. The site covers regular expression usage in different programming languages and environments.
While the syntax and support is more or less the same on most platforms, the regular expressions syntax still
has some subtle differences, so make sure you go through the article’s subject about .NET regular expres-
sions at http://www.regular-expressions.info/dotnet.html. PowerShell uses the .NET regular
expressions internally.

Finding Matches for a Regular Expression
Getting back to our problem, we need to create a regular expression that will describe a number.
We can do it by specifying \d+, which means “one or more digit symbols.” We then need to
apply that expression over the string and get all the matches. We can do that by calling the
regular expression’s Matches() method. It returns a collection of Match objects. We need to
check if every match is successful by verifying its Success property. If a match is successful, the
value of the string that matched the regular expression, our much-needed number, is available

Deshev_940-3C15.fm Page 294 Thursday, January 17, 2008 4:51 PM

C H AP TE R 1 5 ■ IN PU T A N D O U TP U T 295

through the Value property of the first Group object. To solve the problem, we will create a new
script, Extract-Numbers.ps1. Here is its code:

$nums = .\Get-ContentAsString.ps1 .\test_numbers.txt
$numberMatcher = [regex] "\d+"

$matches = $numberMatcher.Matches($nums)
foreach ($match in $matches)
{
 if ($match.Success)
 {
 $number = $match.Groups[0].Value
 Write-Host "number: $number"
 }
}

Note that the first group is available at index 0. Here is the script output:

PS> .\Extract-Numbers.ps1
number: 1
number: 2
number: 3
number: 4
number: 5

Finding String Occurrences Inside Files
Seasoned shell scripters are, without doubt, aware of utilities that search for a given string or
regular expression pattern’s occurrences in one or many files. The typical UNIX utility that
does that is grep, and on Windows, this job is done by the findstr tool. PowerShell can use
those utilities if they are available, but we are better off using the built-in Select-String cmdlet
that offers the same functionality.

The most important Select-String parameters are -Pattern and –Path. The former contains
the string or regular expression that we are looking for. The latter contains the file name or
wildcard that specifies the files we will be searching in. To see the cmdlet in action, we can use
it to find all occurrences of the string “if” in all PowerShell scripts in the current folder:

PS> select-string if *.ps1

Detect-Encoding.ps1:8:if ($utf8BOM -eq "EFBBBF")
Detect-Encoding.ps1:14:if ($utf16BOM -eq "FFFE")
Detect-Encoding.ps1:20:if ($utf16BOM -eq "FEFF")
Extract-Numbers.ps1:7: if ($match.Success)

Of course, Select-String is tightly integrated with PowerShell’s object-oriented infrastruc-
ture. The result we get is not just a bunch of text lines; it is a collection of MatchInfo objects.
Those objects contain information about the file and the line where the match was found. Here
is how to get that information using the select cmdlet to retrieve the Line, FileName, and Path
properties:

Deshev_940-3C15.fm Page 295 Thursday, January 17, 2008 4:51 PM

296 CH AP T E R 1 5 ■ I N P U T AN D O U T PU T

PS> select-string if *.ps1 | select Line,FileName,Path

Line Filename Path
---- -------- ----
if ($utf8BOM -eq "EF... Detect-Encoding.ps1 Z:\15 - Input and O...
if ($utf16BOM -eq "F... Detect-Encoding.ps1 Z:\15 - Input and O...
if ($utf16BOM -eq "F... Detect-Encoding.ps1 Z:\15 - Input and O...
 if ($match.Success) Extract-Numbers.ps1 Z:\15 - Input and O...

Regular expressions are a very powerful tool for working with all kinds of text, though they
are a bit hard to learn and may require a larger portion of your time. Trust me—investing the
time will pay off in the future. Once you master regular expressions, you will be able to extract
data from almost any program.

Summary
In this chapter, you learned how to work with file contents: how to retrieve a file, process it, and
save it back to the hard drive. We did a quick tour of the most popular text encodings that may
come in handy if you have to process a file originating from a little-known system. At the end,
I showed you how to find and extract data from freeform text using regular expressions. With
these tools in your toolbox, you should be able to process text coming from different programs
and extract the data you need.

Deshev_940-3C15.fm Page 296 Thursday, January 17, 2008 4:51 PM

297

■ ■ ■

C H A P T E R 1 6

Monitoring Your System

Computers running on a network can sometimes be likened to living organisms. A sophisti-
cated network is like a complex ecosystem; it has all sorts of organisms, each with its own specific
capabilities and requirements. Our PowerShell scripts and commands issued at the interactive
shell are usually in the position of instructing other system components on what to do and how
to do it. Being proactive in anticipating possible problems and failures is one of the character-
istics a successful system administration strategy must have. Unfortunately, it is not always
possible to anticipate and prevent every single problem. In Chapter 9, you learned how to trap
and handle errors generated from within scripts. In this chapter, we will be working with errors
triggered by other programs. You will learn important techniques for monitoring a system and
its components and watching their operation. Our goal is to spot each anomaly and failure as
soon as it happens. In most cases, we can even react and fix the problem before regular users
even notice it! Even if we cannot fix things that quickly, it is always better to know in advance and
notify interested parties, so that the problem has minimal impact on people’s work processes.

In this chapter, we will use two tools that are the pillars of system monitoring: the event log
and performance counters. The event log is a central location that is used both by user programs
and the operating system to store information messages; you will learn how to read event log
entries from within scripts and how to create new entries. Performance counters enable appli-
cation and operating system components to publish performance-related data and can be use
to gather a lot of interesting types of performance statistics. While data gathering may be inter-
esting enough in itself, we are most interested in taking action, so our performance analysis
will be primarily targeted at taking action whenever our monitored application reaches some
performance threshold.

Working with the Windows Event Log
The Windows event log is a central location that is aimed at collecting all sorts of diagnostic
messages. On many occasions, a program cannot display a proper error message to the user,
for example, it might be running as a service that is not allowed to interact with the desktop.
Quite often, the user may not be qualified to interpret an error message, and the best way to
proceed is to write the error to a known location and have it interpreted by system administrators
or other qualified personnel later. Domain administrators can connect to a machine’s event log
and retrieve entries remotely, without needing to physically walk to the user’s machine. That
allows for implementing monitoring solutions that can retrieve errors and react to them—and
the errors could be generated by programs running anywhere on the network.

Deshev_940-3C16.fm Page 297 Thursday, January 17, 2008 3:23 PM

298 CH AP T E R 1 6 ■ M O N I TO R I N G Y OU R S Y S TE M

The event log infrastructure recognizes the concept of logs, or files that are basically
containers for event log entries or messages. A system will have several default logs that were
created at installation time, plus zero or more custom event logs. For example, any Windows
system has the Application, Security, and System event logs. PowerShell’s installation adds
another—the Windows PowerShell log.

The primary tool that system administrators use for viewing messages is the Windows
Event Viewer control panel. It is available under the Administrative Tools section, which you
can reach via both the Start menu and the Control Panel. Figure 16-1 shows a screen shot of the
Windows Event Viewer management snap-in.

Figure 16-1. The Windows Event Viewer showing event log entries

Reading from the System Event Logs
The Event Viewer is a nice and powerful application, but it does little to help us in our scripting
needs. There is no way to use it from a PowerShell script to get event log entries, so fortunately,
PowerShell offers a separate cmdlet that is the entry point of all event-log-related operations—
Get-EventLog.

The first thing that we need to do is get a list of all event logs on the system. We can do that
using the -List cmdlet switch:

PS> Get-EventLog -List

 Max(K) Retain OverflowAction Entries Name

Deshev_940-3C16.fm Page 298 Thursday, January 17, 2008 3:23 PM

CH AP T E R 1 6 ■ M O N I T OR I N G Y OU R SY S TE M 299

 ------ ------ -------------- ------- ----
 20,480 0 OverwriteAsNeeded 630 Application
 512 7 OverwriteOlder 0 DFS Replication
 20,480 0 OverwriteAsNeeded 0 Hardware Events
 512 7 OverwriteOlder 0 Internet Explorer
 512 7 OverwriteOlder 0 Key Management Service
 8,192 0 OverwriteAsNeeded 0 Media Center
 20,480 0 OverwriteAsNeeded 1,980 Security
 20,480 0 OverwriteAsNeeded 6,069 System
 15,360 0 OverwriteAsNeeded 847 Windows PowerShell

As you can see, Windows Vista has some additional event logs beyond the default ones of
System, Security, and Application. The preceding list contains objects that show some of the
event logs’ attributes, such as the size limits and the number of entries each of them currently
contains.

We can read individual entries from an event log by specifying its name as the -LogName
parameter value. Doing so will return all entries, sorted by the time they occurred in descending
order. There is a small catch here, though. If you look at the preceding sample output, you
can see that an event log can contain thousands of entries; for example, the System event log
contains 6,069 records. Retrieving them can be very slow, and most of the time, we do not need to
retrieve all records. The typical usage scenario goes like this, “I need the last ‘X’ entries, so that
I can see if they contain the specific entry that I am looking after.”

We can limit the number of entries that we retrieve by using the -Newest parameter: it
instructs the cmdlet to return the number of events that occurred last. Here is how to use it to
get the last ten events in the System log:

PS> Get-EventLog -LogName System -Newest 10

Index Time Type Source EventID Message
----- ---- ---- ------ ------- -------
 6070 Dec 08 23:06 Info Service Control M... 7036 The descript...
 6069 Dec 08 22:55 Info Dhcp 1103 Your compute...
 6068 Dec 08 22:50 Info Service Control M... 7036 The descript...
 6067 Dec 08 21:55 Info Dhcp 1103 Your compute...
 6066 Dec 08 20:55 Info Dhcp 1103 Your compute...
 6065 Dec 08 19:55 Info Dhcp 1103 Your compute...
 6064 Dec 08 19:20 Info Service Control M... 7036 The descript...
 6063 Dec 08 19:20 Info Service Control M... 7036 The descript...
 6062 Dec 08 19:14 Info Service Control M... 7036 The descript...
 6061 Dec 08 19:14 Info Service Control M... 7036 The descript...

Event entries are usually distinguished by their event ID, type, and source. The event ID is
the most important property, as it uniquely qualifies an event entry. The entry type is inter-
preted as the severity of the event that occurred. It can have the value of Information, Warning,
or Error. The source contains a string displaying the name of the program or system compo-
nent that logged the event. We can use that to filter event log entries by piping the results we
got from Get-EventLog through the Where-Object cmdlet. Let’s do that and get the Information
entries generated from the Dhcp source:

Deshev_940-3C16.fm Page 299 Thursday, January 17, 2008 3:23 PM

300 CH AP T E R 1 6 ■ M O N I TO R I N G Y OU R S Y S TE M

PS> Get-EventLog -LogName System -Newest 10 | `
where { $_.EntryType -eq "Information" -and $_.Source -eq "Dhcp" }

Index Time Type Source EventID Message
----- ---- ---- ------ ------- -------
 6069 Dec 08 22:55 Info Dhcp 1103 Your compute...
 6067 Dec 08 21:55 Info Dhcp 1103 Your compute...
 6066 Dec 08 20:55 Info Dhcp 1103 Your compute...
 6065 Dec 08 19:55 Info Dhcp 1103 Your compute...

Event logs have their own security settings, and not all event logs are created equal. Let’s
see what happens when we try to access the Security log:

PS> Get-EventLog -LogName Security
Get-EventLog : Requested registry access is not allowed.
At line:1 char:13
+ Get-EventLog <<<< -LogName Security

The error is not the most descriptive one on earth, but you may be guessing what is going
on already. Only administrators are allowed to retrieve events from the Security log. On Windows
Vista, that means that you should run PowerShell with elevated privileges. The Security log
contains some interesting information, for example, security audit data (if security auditing
has been enabled on the system). And we can use it to get the times of successful user logins on
the system (remember to run the following command with administrator privileges):

PS> Get-EventLog -LogName Security -Newest 100 | `
where { $_.EventID -eq 4648 -and `
 $_.TimeGenerated.Date -eq [DateTime]::Today } | `
select TimeGenerated,EntryType

TimeGenerated EntryType
------------- ---------
12/8/2007 7:20:21 PM SuccessAudit
12/8/2007 7:14:22 PM SuccessAudit
12/8/2007 7:12:00 PM SuccessAudit
12/8/2007 5:48:45 PM SuccessAudit
12/8/2007 5:47:53 PM SuccessAudit
12/8/2007 5:44:51 PM SuccessAudit
12/8/2007 5:38:53 PM SuccessAudit
12/8/2007 5:36:33 PM SuccessAudit
12/8/2007 3:27:54 PM SuccessAudit
12/8/2007 3:19:44 PM SuccessAudit
12/8/2007 3:11:29 PM SuccessAudit
12/8/2007 3:03:06 PM SuccessAudit
...

The preceding command relies on the fact that user login events have the ID of 4648. To
get the correct ID of an event that you want to monitor from within PowerShell, open the Event
Viewer application, and get the Event ID value from there. The easiest way to get the ID is to

Deshev_940-3C16.fm Page 300 Thursday, January 17, 2008 3:23 PM

CH AP T E R 1 6 ■ M O N I T OR I N G Y OU R SY S TE M 301

double-click an event log entry and get the value from the Event Properties window, as shown
in Figure 16-2.

Figure 16-2. Event Viewer showing event log entry details revealing the Event ID

It is possible to create scripts that listen to events raised by the system event log and react
whenever a specific event log entry is written there. Unfortunately, this is not directly supported by
PowerShell, and we need an additional snap-in—PSEventing—to do that. Chapter 22 describes
in detail how to subscribe to login events raised by the event log.

Accessing Remote Event Logs

The Get-EventLog cmdlet seems to be lacking an important parameter, -Computer. It can only
access event logs on the local machine. We are out of luck if we want to get an entry from a
remote system. There is a way to do that, but it is not as easy as calling a single cmdlet. The
easiest approach would be to use the WMI infrastructure. The Get-WmiObject cmdlet allows us
to retrieve objects from remote machines and get entries from a remote event log. The WMI
object that exposes an event log is the Win32_NTEventLogFile object. It represents objects similar to
the ones we got when we requested the list of event logs from Get-EventLog. Actual event log
entries are represented by Win32_NTLogEvent objects. They have a LogFile property that allows
us to distinguish between, say, entries stored in the Application log and entries stored in the
Security one.

Getting events using WMI presents us with the same problem we had when working with
Get-EventLog—we need a way to restrict the number of events that we get back from our query,
so that we get better performance out of our script. WMI allows us to filter objects that we get
back with a special language called WMI Query Language (WQL). We can craft a filter that uses

Deshev_940-3C16.fm Page 301 Thursday, January 17, 2008 3:23 PM

302 CH AP T E R 1 6 ■ M O N I TO R I N G Y OU R S Y S TE M

the event entry RecordNumber property to get the last “X” events. To make that work, we need the
total number of events. We need to get the Win32_NTEventLogFile object for our log file and get
the number of entries it contains. We then need to calculate a threshold value by subtracting the
number of entries we need from the total number of entries. After that, we can craft a query that
returns all Win32_NTLogEvent objects with a RecordNumber greater than our threshold value. We
can demonstrate that from a script, called Get-RemoteEvents.ps1, which connects to the NULL
computer and gets the last ten entries in the Application event log. Here is the code:

$applicationLog = Get-WmiObject Win32_NTEventLogFile `
 -filter "LogFileName = 'Application'" `
 -computer NULL

$startRecord = $applicationLog.NumberOfRecords - 10
$filter = "Logfile = 'Application' AND RecordNumber > $startRecord"
Get-WmiObject Win32_NTLogEvent -filter $filter `
 -computer NULL | `
 sort TimeGenerated –Descending

The script returns a collection of objects sorted by their TimeGenerated property values in
descending order. We can call it on the command line and display the EventCode, SourceName,
and Message properties, formatted as a list:

PS> .\Get-RemoteEvents.ps1 | select EventCode,SourceName,Message | fl

EventCode : 2004
SourceName : usbperf
Message : Usbperf data collection failed. Collect function called w
 ith usupported Query Type.

EventCode : 1008
SourceName : Microsoft-Windows-Perflib
Message : The Open Procedure for service "WmiApRpl" in DLL "C:\Wind
 ows\system32\wbem\wmiaprpl.dll" failed. Performance data
 for this service will not be available. The first four by
 tes (DWORD) of the Data section contains the error code.
...

WMI is a powerful tool that can help with automating all sorts of management activities.
Chapter 20 covers in detail what WMI is and how we can use it from within PowerShell.

Writing to the Event Log
Automating event log reads and inspecting data are important management activities, but they
are only part of the story. We often need to write to an event log too. The best example for needing
to do so is a script that runs as a scheduled task under a different user account and cannot
interact with the desktop. That script needs a way to notify users and administrators whenever
it performs an operation or faces a problem that it cannot work around. Since it cannot print a
message to the screen, it has to write it somewhere. The simplest solution is to use a text file in

Deshev_940-3C16.fm Page 302 Thursday, January 17, 2008 3:23 PM

CH AP T E R 1 6 ■ M O N I T OR I N G Y OU R SY S TE M 303

a well-known location such as C:\Windows\Temp\importantscript.log and document the location
somewhere. A better solution is to write an entry to the Application event log. That log was
created specifically for user applications and any program can write entries to it.

Writing event log entries is not directly supported by PowerShell, and we need to use a
.NET class to help us with that task. The System.Diagnostics.EventLog class has been a part of
the .NET framework since its initial release. It can read and write entries to the event log, and
in fact, the Get-EventLog cmdlet uses it to retrieve entries we need.

The first thing that we need when logging an event is an event source, a short string that
identifies the application that generated the event. We need to register the event source with
the event log system before we use it when logging events. To register our source, we need to
call the [System.Diagnostics.EventLog]::CreateEventSource static method. There’s one minor
caveat here—we need administrator privileges to do that. Using the EventLog class, we can
create a short script called New-EventSource.ps1 that takes an event source string as a parameter,
verifies whether it already exists, and if it doesn’t, creates it. Here is the code:

param ([string]$source = $(read-host "Enter Event Source"))

function New-EventSource([string] $source)
{
 if(![System.Diagnostics.EventLog]::SourceExists($source))
 {
 [System.Diagnostics.EventLog]::CreateEventSource($source, `
 'Application')
 }
 else
 {
 Write-Warning "Source $source already exists."
 }
}

trap
{
 Write-Error @"
Could not create event source.
Make sure you run this script with Administrator privileges.
"@

 exit
}
New-EventSource $source
Write-Host "Event source $source created in the Application event log"

The script assumes that any error raised at the time of creating the event log has been
caused by not having enough permissions and writes a friendly error message suggesting that.
In addition, the code issues a warning if the event source already exists. To get further informa-
tion on working with the Write-Warning and Write-Error cmdlets, please refer to Chapter 9.

Let’s now use the script to generate a new event source for our scripts and call it
PowerShellScripts:

Deshev_940-3C16.fm Page 303 Thursday, January 17, 2008 3:23 PM

304 CH AP T E R 1 6 ■ M O N I TO R I N G Y OU R S Y S TE M

PS> .\New-EventSource.ps1 PowerShellScripts
Event source PowerShellScripts created in the Application event log
PS>

Now that we have our event source registered, we can log entries without needing to run
PowerShell as an administrator. We can create a script, Write-Event.ps1, that takes as param-
eters the message, the event source, the entry type, and the event ID for a log entry and writes
that to the Application log. The script has to create an EventLog object, configure its Log and
Source properties, and write the entry using the WriteEntry() method. We want to make the
script both easy to use on the command line and easy to call from another script. That is why
the script will prompt the user to enter any of the parameters he or she has forgotten to supply.
Here is the code:

param
(
 [string]$message = `
 $(read-host "Enter a Event Description"),
 [string]$source = `
 $(read-host "Enter Event Source"),
 [string]$type = `
 $(read-host "Enter Event Type [Information, Warning, Error]"),
 [int]$eventId = `
 $(read-host "Enter EventID")
)

function Write-Event(`
 [string] $message,
 [string] $source = $(throw "Event source parameter required."),
 [System.Diagnostics.EventLogEntryType] $type,
 [int] $eventId)
{
 # Check if the event source actually exists.
 if(![System.Diagnostics.EventLog]::SourceExists($source))
 {
 throw "Event source $source does not exist."
 }

 $log = New-Object System.Diagnostics.EventLog
 $log.Log = "Application"
 $log.Source = $source
 $log.WriteEntry($message, $type, $eventId)
}

Write-Event $message $source $type $eventId

Write-Host @"
Logged event:

Deshev_940-3C16.fm Page 304 Thursday, January 17, 2008 3:23 PM

CH AP T E R 1 6 ■ M O N I T OR I N G Y OU R SY S TE M 305

$message

Source: $source
Type: $type
Event ID: $eventId
"@

As you can see, all the real work happens in the Write-Event function. It can easily be taken
out and added to a script library and thus reused in other scripts. Here is how to use the script
to log a new entry:

PS> .\Write-Event.ps1 -message "Test message from PowerShell" `
-source PowerShellScripts -type Information -eventId 1000
Logged event:
Test message from PowerShell

Source: PowerShellScripts
Type: Information
Event ID: 1000

Figure 16-3 shows how our entry looks when viewing its properties in the Windows Event
Viewer.

Figure 16-3. The Event Viewer showing our log entry

I picked the event ID value of 1000 at random. When logging real entries, you should care-
fully pick the event IDs and use them to distinguish among different event types. For example,
you can use an EventID of 1000 for describing one type of error and 1001 for another. Anyone
knowing the event source and what different event IDs stand for can easily interpret log entries
written by your script.

Deshev_940-3C16.fm Page 305 Thursday, January 17, 2008 3:23 PM

306 CH AP T E R 1 6 ■ M O N I TO R I N G Y OU R S Y S TE M

Performance Counters
Windows performance counters are special objects supported by the operating system that allow
applications and components to publish performance data. They also allow other applications to
capture and analyze that published data. The performance data can be of any kind: ranging from
the standard values of the percentage of CPU time that a program uses or the amount of memory
that it has allocated to application-specific metrics like the number of transactions per minute a
service is able to process. We can use the data provided by performance counters to identify system
bottlenecks and fine-tune our application or system performance.

Performance counter data is available through a control panel application that is called
Reliability and Performance Monitor on Windows Vista. The application is a part of the
Performance Information and Tools control panel section and can be found inside the Advanced
Tools subsection. Previous versions of Windows expose performance counter data through
the Performance control panel application located inside the Administrative Tools section.
Figure 16-4 shows the Reliability and Performance Monitor application graphing statistical data
about the percentage of total CPU time used on the system.

Figure 16-4. The Reliability and Performance Monitor graphing data coming from a
performance counter

We can add other counters to be monitored by right-clicking the list of counters in the
lower window area and selecting Add Counters from the context menu. We are presented with
a dialog box that looks like the one shown in Figure 16-5.

Deshev_940-3C16.fm Page 306 Thursday, January 17, 2008 3:23 PM

CH AP T E R 1 6 ■ M O N I T OR I N G Y OU R SY S TE M 307

Figure 16-5. Adding a new process performance counter

The dialog box presented in Figure 16-5 is important two reasons. The first is that we can
get the performance counter names from the list and use them from our PowerShell scripts.
Yes, the names are the same: % Processor Time, Handle Count, and so on. The second impor-
tant thing is the Instances of selected object list box. When we are gathering process-related
performance counter data, counters are named with the name of the process without the .exe
suffix. If we have more than one process with the same name, the subsequent counters are
named with #1, #2, #3, and so on suffixes. Most of the time, including in the examples presented
in this chapter, we will be working with processes that have only a single instance, but if you are
faced with a multiple instance situation, you now know that you can get the correct counter for
your process in the Add Counters dialog box.

Consuming Counter Data
Unfortunately, PowerShell has no built-in cmdlet that allows us to get performance counter
values. We have to use .NET classes for that. Fortunately, it is not too hard—all we have to do is
create a System.Diagnostics.PerformanceCounter instance, configure its properties, and repeat-
edly call its NextValue() method. Before we start doing that, we should first configure our
permissions. Only users that have been added to the Performance Monitor Users group can
access performance counter data. Figure 16-6 shows my current user added to that group.
Note the text at the bottom-right corner of the window; this detail has bitten me in the past!
You need to log off and then log on again for changes to Windows group membership to take effect.

Deshev_940-3C16.fm Page 307 Thursday, January 17, 2008 3:23 PM

308 CH AP T E R 1 6 ■ M O N I TO R I N G Y OU R S Y S TE M

Figure 16-6. The Performance Monitor Users group members

Now that our permissions are all set up, we can create a small script,
Monitor-TotalCpuUsage.ps1, which uses a performance counter to fetch and display the current
CPU load every second. The script loops forever, so just press Ctrl+C when you want to termi-
nate it. Here is the code:

$counter = New-Object Diagnostics.PerformanceCounter
$counter.CategoryName = "Processor"
$counter.CounterName = "% Processor Time"
$counter.InstanceName = "_Total"

while ($true)
{
 $value = $counter.NextValue()
 Write-Host "CPU: $value"

 sleep 1
}

The settings for the category, counter name, and instance name can be easily obtained
from the new performance counter dialog box shown in Figure 16-5. Here is what running the
script produces:

PS> .\Monitor-TotalCpuUsage.ps1
CPU: 0
CPU: 11.27252
CPU: 14.66121
CPU: 14.88817
CPU: 10.15882

Deshev_940-3C16.fm Page 308 Thursday, January 17, 2008 3:23 PM

CH AP T E R 1 6 ■ M O N I T OR I N G Y OU R SY S TE M 309

The CPU does not seem too overworked at the moment; only about ten percent of its
resources are being utilized.

Monitoring Programs
We live in an imperfect world where we may have to deal with misbehaving programs. Quite
often, we have to use a program that is defective in some way, and it may need to be closely
monitored and possibly restarted if it gets hung or consumes too many resources. Performance
counters are the perfect tool for that monitoring. Using them, we can create small companion
scripts that watch over other programs. They can just sit there, analyzing performance data,
and take action when needed.

Detecting Memory Leaks

A very common programming error is keeping references to objects in memory without releasing
and deallocating them when needed. This error may manifest in programs as having the memory
usage grow and grow over time until the program takes up all available memory. Having no
available memory may prevent other programs from starting or working properly. Using a
Private Bytes performance counter for the Process category, we can keep track of a process’
allocated memory and restart it when it reaches a certain threshold. I have a tiny misbehaving
program, called MemoryHog.exe, which will do nothing but allocate 2MB of memory every second.
We can tame that program with a script called Monitor-MemoryUsage.ps1, which will get the allo-
cated memory from a performance counter and terminate the process if it goes above 30MB of
allocated memory. Here is the code:

$counter = New-Object Diagnostics.PerformanceCounter
$counter.CategoryName = "Process"
$counter.CounterName = "Private Bytes"
$counter.InstanceName = "memoryhog"

function Get-MemoryUsage()
{
 $value = 0
 trap
 {
 continue
 }
 $value = $counter.NextValue()
 return $value
}

while ($true)
{
 $value = Get-MemoryUsage
 $valueMegaBytes = $value / 1024 / 1024
 Write-Host "Memory: $valueMegaBytes"

Deshev_940-3C16.fm Page 309 Thursday, January 17, 2008 3:23 PM

310 CH AP T E R 1 6 ■ M O N I TO R I N G Y OU R S Y S TE M

 if ($valueMegaBytes -gt 30)
 {
 Write-Host "Process exceeded the memory limit. Terminating..."
 Stop-Process -Name memoryhog
 exit
 }

 sleep 1
}

Note the Process counter category and the Private Bytes instance name; I got those from
the Reliability and Performance Monitor dialog shown in Figure 16-5.The only special thing
about the preceding code is the way we get the performance counter value—we have moved it
to a separate function and added an error trap, so that we return a value of 0 if the process has
not been run yet. We check the memory usage every second, and terminate the process if the
$valueMegaBytes variable contains a number greater than 30. Here is the output we get after we
run MemoryHog.exe from within Windows Explorer and then start the script:

PS> .\Monitor-MemoryUsage.ps1
Memory: 19.08203125
Memory: 21.08203125
Memory: 24.29296875
Memory: 26.29296875
Memory: 28.29296875
Memory: 29.66796875
Memory: 31.66796875
Process exceeded the memory limit. Terminating...

Detecting Hung Programs

Similar to the high memory usage situation, a program may go astray and fall into an infinite
loop. Those programs keep trying to do something, fail, and try again. The result is that they
hang and occupy all available CPU resources. When that happens, the only possible solution is
to terminate the program.

We can use a CPU-related performance counter and write a script, Monitor-CpuUsage.ps1,
that gets the percent of CPU time a process uses every second. If it gets ten consecutive measure-
ments that are above 80 percent, it terminates the program. It uses a counter that gets incremented
for every reading that is above 80 and gets zeroed out when we detect a reading below that
threshold. The monitored program in this example is a small executable called CPUHog.exe,
which will do nothing but loop indefinitely until it occupies all CPU resources. It tries to simulate a
program hung in an infinite loop. Here is our monitor script’s code:

$counter = New-Object Diagnostics.PerformanceCounter
$counter.CategoryName = "Process"
$counter.CounterName = "% Processor Time"
$counter.InstanceName = "cpuhog"

Deshev_940-3C16.fm Page 310 Thursday, January 17, 2008 3:23 PM

CH AP T E R 1 6 ■ M O N I T OR I N G Y OU R SY S TE M 311

function Get-CpuUsage()
{
 $value = 0
 trap
 {
 continue
 }
 $value = $counter.NextValue()
 return $value
}

$abnormalMeasureCount = 0

while ($true)
{
 $value = Get-CpuUsage
 Write-Host "CPU: $value"

 if ($value -gt 80)
 {
 $abnormalMeasureCount++
 }
 else
 {
 $abnormalMeasureCount = 0;
 }

 if ($abnormalMeasureCount -gt 10)
 {
 Write-Host "Process appears to be hung. Terminating..."
 Stop-Process -Name cpuhog
 exit
 }

 sleep 1
}

Again, I got the % Processor Time counter name from that same Reliability and Performance
Monitor dialog. As you can see from the preceding code, we terminate the process only if our
$abnormalMeasureCount variable gets incremented to a value above 10. Here is what we get when we
run the CPUHog.exe program from within Windows Explorer and then start the monitor script:

PS> .\Monitor-CpuUsage.ps1
CPU: 0
CPU: 94.12367
CPU: 90.34071
CPU: 88.80951
CPU: 90.0821

Deshev_940-3C16.fm Page 311 Thursday, January 17, 2008 3:23 PM

312 CH AP T E R 1 6 ■ M O N I TO R I N G Y OU R S Y S TE M

CPU: 87.44567
CPU: 89.82497
CPU: 90.68784
CPU: 95.20763
CPU: 81.51465
CPU: 91.95991
CPU: 93.40311
Process appears to be hung. Terminating...

Note that the 80 percent CPU usage threshold may need some tweaking in your specific
scenario. For example, on a dual-core or a multiprocessor system, that value may be below
50 percent, because the executing process will hog only one of the CPU cores, leaving the rest
available.

Detecting Unexpected Program Exits

While we are on the topic of monitoring external programs, I’ll cover a scenario that involves a
broken program that may exit unexpectedly. We do not need a performance counter to resolve
that, but we still need a monitor script. We will create a script, Monitor-Crashes.ps1, that will
start a process and wait for it to exit. We are relying on the fact that PowerShell will block script
execution if we execute an external program until that program exits. Our script will try to restart
the program five times and then give up. Here is the code:

function Start-Process
{
 Write-Host "Starting process..."
 .\UnpredictableCrash.exe
}

for ($i = 0; $i -lt 5; $i++)
{
 Start-Process

 Write-Host "Process exited $($i + 1) times."
}

Write-Host "Program restart limit exceeded."

Here is the output we get after running the script:

PS> .\Monitor-Crashes.ps1
Starting process...
Process exited 1 times.
Starting process...
Process exited 2 times.
Starting process...
Process exited 3 times.
Starting process...

Deshev_940-3C16.fm Page 312 Thursday, January 17, 2008 3:23 PM

CH AP T E R 1 6 ■ M O N I T OR I N G Y OU R SY S TE M 313

Process exited 4 times.
Starting process...
Process exited 5 times.
Program restart limit exceeded.

We are using a small program, UnpredictableCrash.exe, which pretends it is doing some-
thing for a second and then exits. This way, we simulate a program that may be doing useful
work but crashing under some obscure circumstances. You can easily change the script so that
it restarts the program if the program must be running at all times.

Summary
Windows provides nice utilities that allow us to consume event log entries and performance
counter data in a friendly way using a convenient graphical user interface. Sometimes, though,
we need to get hold of that data from within a script that tries to accomplish a task depending
on an external program. Fortunately, PowerShell and .NET allow us to get that data relatively
easily and then move on to concentrate on the task we should really be doing.

In this chapter, I demonstrated how to get entries from the system event logs and how to
write your own entries inside. I then outlined several techniques for monitoring applications
using Windows performance counters. Using both the event logs and performance counters,
we can turn PowerShell into a formidable system-monitoring tool that can save us a lot of work
and time spent manually inspecting the graphical tools that Windows already offers.

Deshev_940-3C16.fm Page 313 Thursday, January 17, 2008 3:23 PM

315

■ ■ ■

C H A P T E R 1 7

PowerShell and the
World Wide Web

“The Internet” is a loose term and can mean many things to different people. Some of those
meanings, in no particular order, can be the World Wide Web, e-mail, file transfers, and P2P
transfers like Bit Torrent, instant messaging, and so on. Most of what we know as the Internet
today is built on top of the Hypertext Transfer Protocol, or HTTP for short, which is a request/
response protocol that exchanges data between a client and a server. While originally designed
to publish and retrieve web pages, it is now used to do a lot more, including transporting all sorts
of media, news feeds, and even serving as a medium to exchange messages between programs
running on different servers.

You might be wondering what a console shell may have in common with the Internet, and
the World Wide Web in particular? Every once in a while, we may have to deal with a remote
resource—maybe to download or upload a file or just check if a server is up and running. This
is seldom needed from an interactive shell session, but it can be tremendously useful in scripts
that automate repetitive tasks. PowerShell does not have any built-in features that can help us
with downloading or uploading files or even working with web pages. Fortunately, the .NET
Framework provides excellent support for working with the HTTP protocol. It contains classes
that allow us to work with files located on remote servers that provide an easy-to-use interface
while hiding the gory details of working with raw connections.

In this chapter, we will start with the basic task of downloading files via the HTTP protocol.
Once you know how to do that, we will process downloaded web pages from our scripts and
extract useful pieces of information from them. I will show you how easy it is to work with news
feeds exposed from remote sites by downloading the feed XML data and processing it from
within our scripts. Last but not least, we will be calling web services to communicate with
programs on remote servers and send commands or fetch data. As an added bonus, we will
show how to work with File Transfer Protocol (FTP) connections and upload and download
files with that protocol.

Laying the Foundation
Traditionally, working with the web and downloading and uploading files to remote computers
has been out of the scope of a shell’s functionality. It is good programming practice to lay a
clear boundary between software that starts and manages other software (the shell) and soft-
ware that works with files on remote servers. There are popular, free programs with formidable

Deshev_940-3C17.fm Page 315 Thursday, January 17, 2008 3:26 PM

316 CH AP T E R 1 7 ■ P O W E R SH E L L A N D TH E W O R L D W ID E W E B

feature lists that can do that very well; the first that come to mind are wget and cURL. Both of
these are console applications that have sprung out of the UNIX world, but their Windows
ports are fully functional and can both download and upload files over several protocols. If you
have invested in scripts that rely on such utilities, you can easily port them to PowerShell; it
fully supports working with console applications.

Working with external programs has one drawback—those programs have to be installed
on the machine where our scripts will be running. Installing software is easy on only one work-
station, but it can quickly become a major hassle if we have to distribute the script to several
computers. Fortunately, there is a better way: we can use the .NET Framework to do our job
without resorting to external programs. The framework ships with the System.Net.WebClient
class that is both very powerful and easy to use. It can handle all the uninteresting details of
establishing and maintaining an HTTP or FTP session and allow us to focus on the actual results.

Fetching Files from the Web
The original intent behind the HTTP protocol was to allow people to easily share hypertext
documents. Documents are identified with a Uniform Resource Locator (URL) and can contain
links to other documents, multimedia, and whatnot. A web browser works by downloading a
document and analyzing the links to other resources, and in turn, downloading those to the
client computer. After that, it assembles and displays the web page to the user. We can do the
same in PowerShell and skip the actual display.

Getting a web page’s contents is very easy once we have the WebClient class at our disposal.
Here is how we can use it to get the contents of the Yahoo! start page:

PS> $client = New-Object System.Net.WebClient
PS> $client.DownloadString("http://www.yahoo.com")
<html>
<head>
<title>Yahoo!</title>
...

Yes, two lines are all we need! The first one creates an instance of the WebClient class, and
the second one uses the DownloadString method on that newly created object to get the contents of
the web page as a string. The string that we get back is the HTML code of the web page. HTML
(Hypertext Markup Language) is a somewhat human-readable text format used to describe
web pages’ contents to browsers for display to the user. We will work with that code and extract
information from it later on in this chapter.

We can now use what you learned in the preceding example and wrap that code in our first
utility script called Get-Url.ps1. It will take a single string as a parameter and return the contents as
a string. Here is the code:

param ($Url)
$client = New-Object System.Net.WebClient

$contents = $client.DownloadString($Url)
$contents

We make sure we output the $contents variable so that it is available as a result or as a
value further down the pipeline. Here is how we can use that script:

Deshev_940-3C17.fm Page 316 Thursday, January 17, 2008 3:26 PM

CH A PT E R 1 7 ■ P O W E R SH E L L A N D T HE W OR L D W I DE WE B 317

PS> .\Get-Url.ps1 "http://www.yahoo.com"
<html>
<head>
<title>Yahoo!</title>
...

Let’s now try something fancy and download a binary file. There are tons of pictures on the
Web, but let us try our luck with Flickr’s logo, located at http://l.yimg.com/www.flickr.com/
images/logo_home.png:

PS> $url = "http://l.yimg.com/www.flickr.com/images/logo_home.png"
PS> .\Get-Url.ps1 $url
‰PNG

 IHDR ™~¬' tEXtSoftware Adobe ImageReadyqe< ¬IDATx
...

This feels like success, but somehow, it is not very useful. That binary representation does
not look too good on the console. How do we properly view that image? Of course, we can save
it to a file by piping the result to the Set-Content cmdlet:

PS> .\Get-Url.ps1 $url | Set-Content flickr-logo.png
PS> Invoke-Item flickr-logo.png

We use the Invoke-Item cmdlet to make Windows open the newly saved file. Figure 17-1 shows
how it looks in the default Windows Photo Gallery application that comes with Windows Vista.

Figure 17-1. Viewing our newly downloaded image

Deshev_940-3C17.fm Page 317 Thursday, January 17, 2008 3:26 PM

318 CH AP T E R 1 7 ■ P O W E R SH E L L A N D TH E W O R L D W ID E W E B

Now, piping the downloaded string through Set-Content may not be the best way to handle
saving a downloaded file, and it is certainly not the shortest. We can do better here by using the
WebClient object’s DownloadFile method to save the file directly to disk. We can incorporate
that in our script by supporting another parameter: FileName. If it has been provided, the script
will pass it to DownloadFile, and that method will save the file contents. Here is the modified code:

param ($Url, $FileName)

$client = New-Object System.Net.WebClient

if ($FileName)
{
 $client.DownloadFile($Url, $FileName)
}
else
{
 $contents = $client.DownloadString($Url)
 $contents
}

Our job is quite simple here; the DownloadFile method does everything for us. Here is how
we can now call our script:

PS> $file = Join-Path (Get-Location) "flickr-logo2.png"
PS> .\Get-Url.ps1 -Url $url -FileName $file
PS> diff (Get-Content flickr-logo.png) (Get-Content flickr-logo2.png)
PS>

Note that we need an absolute path that contains both the path and the file name for the
resulting file. We can obtain a full path that points to the current directory by using Join-Path
and pass the current folder and the file name. I have used the diff command in the last line just
to make sure that the file I got from the DownloadFile method is the same as the one I got from
DownloadString. There are no differences, and our download logic seems to be working fine.
Why do we need to modify our script and make it more complex if we get the same result? The
answer is simple—performance. The piped version of our file download script needs to get the
entire file contents and then save the file to disk. Imagine doing that for a 4GB DVD image file;
you are most likely to get an out-of-memory error. The DownloadFile method is smart enough
to write data piece by piece as it arrives from the server, without unnecessarily holding it in
memory.

Setting Connection Options and Debugging
Connection Problems
The HTTP protocol is designed to handle a lot of situations, and as such, it has become quite
complex. It supports all sorts of content and runs over heterogeneous networks. Often, we

Deshev_940-3C17.fm Page 318 Thursday, January 17, 2008 3:26 PM

CH A PT E R 1 7 ■ P O W E R SH E L L A N D T HE W OR L D W I DE WE B 319

need to do extra work to get a network resource, for example, pass extra information in the
request headers, go through a proxy server, or authenticate with a set of credentials. In this
section, you will learn how to do that, and I will show you the tools that can help craft the right
request in unfamiliar situations.

Working with Proxy Servers

It is not uncommon for a computer not to be directly connected to the Internet. Either because
of technical restrictions or as a matter of organizational policy, very often connections to web
pages outside the local network are established through proxy servers. This is done for all sorts
of reasons: the proxy server can cache content to reduce page load time; it can track user activity
and even deny access to some resources. Apart from learning how to configure a script so that
it uses a proxy server, you will learn how to use one to trace what is sent over the network for
debugging purposes.

FIDDLER: A DEBUGGING PROXY SERVER

A debugging proxy server is a program that acts like a real proxy server. It sits between other programs and
the real server and forwards data back and forth. Its real job, though, is to log what gets sent over the wire and
allow us to inspect the HTTP session. Fiddler is one such proxy server. It is probably the best tool to analyze
HTTP traffic and is freely available. The latest release of the tool is version 2, and it is available from http://
www.fiddler2.com. We will use Fiddler throughout this chapter to inspect what gets sent over the network
and to diagnose connection problems. The tool is a real gem and a huge time saver.

After installing Fiddler, you will get a fully functional HTTP proxy server that listens on port 8888 by
default. For security reasons, it accepts connections originating from the local machine only; that will be more
than enough for our experiments. Fiddler should already have taken care of configuring Internet Explorer to
forward all connections to the proxy. For other browsers, like Mozilla Firefox and our own PowerShell scripts,
we will have to do that manually; we need to specify localhost as the proxy server and 8888 as the port.

 Figure 17-2 shows a sample Fiddler session. The user interface is split into two parts. The left pane
shows the HTTP connections that the tool has detected and allows you to select a connection for detailed
inspection. The right pane shows details of the selected connection. We will be working with only the session
inspector, as we will not be interested in fiddling with data or analyzing performance statistics. The session
inspector’s top pane shows the request details in various formats and detail levels. We can select to view the
headers sent to the server, the HTTP headers, any POST data, authentication details, and possibly submitted
XML data. The session bottom pane shows details about the response we got from the server. Again, it can
display response headers, but it also allows us to view the response body interpreting it as various different
formats: text, raw binary, image, and XML.

Figure 17-2 shows a request to Google’s search page that was opened from within Internet Explorer. We
are viewing both the request and response in the raw text view. Google detected that we are using a modern
browser and served the response in a gzip-compressed format. Fiddler fully supports that and allows us to
view the raw uncompressed text response.

Deshev_940-3C17.fm Page 319 Thursday, January 17, 2008 3:26 PM

320 CH AP T E R 1 7 ■ P O W E R SH E L L A N D TH E W O R L D W ID E W E B

Figure 17-2. The Fiddler session inspector showing a request to Google’s search page

How do we configure a proxy for our PowerShell scripts? You might have guessed it—
System.Net.WebClient has a Proxy property that we need to initialize with the right object. The
object that we must associate with that property is a System.Net.WebProxy one. We need to
initialize it with a URL containing the address and port for our proxy server. When using Fiddler,
this setting must be http://localhost:8888. Let’s add proxy server support to our Get-Url.ps1
script by introducing another parameter, $Proxy. We will follow the familiar pattern: if the
parameter is not empty, we will set up a new WebProxy object. Here is the new code:

param ($Url, $FileName, $Proxy)

$client = New-Object System.Net.WebClient

if ($Proxy)
{
 $proxyConfig = New-Object System.Net.WebProxy -arg $Proxy
 $client.Proxy = $proxyConfig
}

Deshev_940-3C17.fm Page 320 Thursday, January 17, 2008 3:26 PM

CH A PT E R 1 7 ■ P O W E R SH E L L A N D T HE W OR L D W I DE WE B 321

if ($FileName)
{
 $client.DownloadFile($Url, $FileName)
}
else
{
 $contents = $client.DownloadString($Url)
 $contents
}

Two lines of real code and we have proxy server support! The WebClient class is a really
nice tool. We can use the script to get the Flickr logo once again:

PS> $url = "http://l.yimg.com/www.flickr.com/images/logo_home.png"
PS> $file = Join-Path (Get-Location) "flickr-logo2.png"
PS> $proxy = "http://localhost:8888"
PS> .\Get-Url.ps1 -Url $url -FileName $file -Proxy $proxy
PS>

Nothing to see at the console, but this time, we can flip to the Fiddler session inspector for
details (see Figure 17-3).

Figure 17-3. Fiddler showing an image returned by the server

Deshev_940-3C17.fm Page 321 Thursday, January 17, 2008 3:26 PM

322 CH AP T E R 1 7 ■ P O W E R SH E L L A N D TH E W O R L D W ID E W E B

Figure 17-3 shows a raw view of our request. As you can see, our PowerShell-initiated web
request has fewer headers and a lot less data than the one started by Internet Explorer. The
figure also shows one of Fiddler’s killer features—the Image view of the response. We can see
the actual picture the server returned to us without having to save the data to an external file or
switch to another program.

Working with Request Headers

Many important HTTP options and some important data are sent through request headers.
Headers are name-value pairs that are transmitted in the request and carry additional informa-
tion about interpreting the request body. Headers are used to identify the client or the browser
to the server, negotiate supported content types, configure caching options, set cookies, and a
lot more.

Let’s now do a simple request to the Google search page similar to the one we did with
Internet Explorer when we introduced Fiddler. Here is the command:

PS> $url = "http://www.google.com"
PS> $proxy = "http://localhost:8888"
PS> .\Get-Url.ps1 -Url $url -Proxy $proxy
<html><head><meta http-equiv="content-type" content="text/html; charse
t=ISO-8859-1"><title>Google</title><style>body,td,a,p,.h{font-family:a
...

I mentioned that Google knows what type of browser is requesting its pages and serves
different content types. This is known as content negotiation. When we visited the page with
Internet Explorer, we got back a gzip-compressed version of the page. When we requested the
same page from our PowerShell script, we got back a plain-text version. How does Google know
what type of content to serve back? The mechanism for doing that relies on HTTP headers. First,
Google checks the Accept-Encoding header; it tries to detect if the client supports the gzip or
deflate encoding algorithms. Due to buggy browsers that claim that they support gzipped content
but fail to actually do so (the first one that comes to mind is Internet Explorer 6.0), Google also
checks the User-Agent header. The User-Agent header uniquely identifies the client browser
type. At the end, Google streams compressed content to known good browsers that have also
indicated that they can handle that type of content.

Let’s now try to get the compressed version of Google’s search page. First, we will need
to add support for sending HTTP headers to our Get-Url.ps1 script. We pass the headers in a
Hashtable object via the $Headers parameter. Our script iterates over the keys of the Hashtable—
those will be the header names—gets the associated values, and adds them to the WebClient’s
Headers collection. Here is the code:

Deshev_940-3C17.fm Page 322 Thursday, January 17, 2008 3:26 PM

CH A PT E R 1 7 ■ P O W E R SH E L L A N D T HE W OR L D W I DE WE B 323

param ($Url, $FileName, $Proxy, $Headers = @{})

$client = New-Object System.Net.WebClient

if ($Proxy)
{
 $proxyConfig = New-Object System.Net.WebProxy -arg $Proxy
 $client.Proxy = $proxyConfig
}

foreach ($headerName in $Headers.Keys)
{
 $client.Headers.Add($headerName, $Headers[$headerName])
}

if ($FileName)
{
 $client.DownloadFile($Url, $FileName)
}
else
{
 $contents = $client.DownloadString($Url)
 $contents
}

Note how we initialize the $Headers parameter to an empty Hashtable. This way, we will
not have to check for null values and the foreach loop will execute zero times, effectively doing
nothing if the parameter has been omitted. Let’s now call our script. We need to provide both
the Accept-Encoding and User-Agent headers. The User-Agent header must contain the
“Mozilla/4.0 (compatible; MSIE 7.0)” string to make Google think it is dealing with an Internet
Explorer 7 browser. Here is the actual invocation:

PS> $url = "http://www.google.com"
PS> $proxy = "http://localhost:8888"
PS> $headers = @{"Accept-Encoding" = "gzip, deflate"; `
"User-Agent" = "Mozilla/4.0 (compatible; MSIE 7.0)"}
PS> .\Get-Url.ps1 -Url $url -Headers $headers -Proxy $proxy > $null
PS>

We redirect the output to $null to avoid seeing the gibberish that is actually the binary
compressed data. We can view the data in Fiddler. Figure 17-4 shows the initial display of the
session inspector. You can see that the request headers contain the Accept-Encoding and
User-Agent values that we provided. For the response part, Fiddler detects that it has received
compressed content and offers us the option to decompress it to view the raw text data.

Deshev_940-3C17.fm Page 323 Thursday, January 17, 2008 3:26 PM

324 CH AP T E R 1 7 ■ P O W E R SH E L L A N D TH E W O R L D W ID E W E B

Figure 17-4. Fiddler showing a gzip-compressed response from Google

Accessing Resources Requiring Authentication

Security plays an important part in any network, and quite often, we need to work with files that
require authenticating before accessing them. The .NET Framework and System.Net.WebClient,
for that matter, support the World Wide Web Consortium–defined HTTP authentication mech-
anisms plus NTLM (NT LAN Manager) authentication, also known as Windows-integrated
authentication. We really need minimal effort to configure our client with the proper credentials.

Before setting up credentials, let’s first see what happens if we try to access a protected
resource without passing the correct credentials. We will use the test page from http://www.
pagetutor.com for demonstration purposes; the protected area is at the http://www.pagetutor.com/
keeper/mystash/secretstuff.html URL. Let’s first request it with a normal browser like Internet
Explorer. Figure 17-5 shows the password prompt that we get.

Let’s see how System.Net.WebClient handles that:

PS> $url = "http://www.pagetutor.com/keeper/mystash/secretstuff.html"
PS> .\Get-Url.ps1 $url
Exception calling "DownloadString" with "1" argument(s): "The remote s
erver returned an error: (401) Unauthorized."
At Z:\18 - The Internet\Get-Url.ps1:22 char:39
+ $contents = $client.DownloadString(<<<< $Url)

Deshev_940-3C17.fm Page 324 Thursday, January 17, 2008 3:26 PM

CH A PT E R 1 7 ■ P O W E R SH E L L A N D T HE W OR L D W I DE WE B 325

Figure 17-5. Internet Explorer shows this password prompt when a page requiring authentication
is requested.

The System.Net.WebClient class is not a user interface component, and it cannot react with a
password prompt. The best it can do is throw an error at us. From the error message, we can see the
HTTP status code of 401, which means that we are not authorized to access the resource.

We will now extend our Get-Url.ps1 script with support for HTTP authentication. To do
that, we have to create a System.Net.NetworkCredential object, initialize it with the user name
and password, and pass that object to the Credentials property of the WebClient object. We will
extend the script with two additional parameters: $UserName and $Password. The script will
create the NetworkCredential object if and only if both of those parameters have been provided.
Here is the code:

param ($Url, $FileName, $Proxy, $Headers = @{},
 $UserName, $Password)

$client = New-Object System.Net.WebClient

if ($Proxy)
{
 $proxyConfig = New-Object System.Net.WebProxy -arg $Proxy
 $client.Proxy = $proxyConfig
}

foreach ($headerName in $Headers.Keys)
{
 $client.Headers.Add($headerName, $Headers[$headerName])
}

Deshev_940-3C17.fm Page 325 Thursday, January 17, 2008 3:26 PM

326 CH AP T E R 1 7 ■ P O W E R SH E L L A N D TH E W O R L D W ID E W E B

if ($UserName -and $Password)
{
 $credentials = New-Object System.Net.NetworkCredential `
 -argumentList $UserName, $Password
 $client.Credentials = $credentials
}

if ($FileName)
{
 $client.DownloadFile($Url, $FileName)
}
else
{
 $contents = $client.DownloadString($Url)
 $contents
}

The pagetutor.com page has been set up with a required user name of “jimmy” and a pass-
word of “page.” Here is how we can access the password-protected page:

PS> $url = "http://www.pagetutor.com/keeper/mystash/secretstuff.html"
PS> .\Get-Url.ps1 -Url $url -UserName "jimmy" -Password "page" `
 -Proxy "http://localhost:8888"

<HTML>
<HEAD>
<TITLE></TITLE>
</HEAD>
<BODY BGCOLOR="#666666" TEXT="#EEEEEE">

<H2 ALIGN="center">MY SECRET STUFF</H2>

</BODY>
</HTML>

As you can see from the response, our request proved successful. Let’s now see what gets
transported over the wire. Figure 17-6 shows Fiddler’s view of the request.

Deshev_940-3C17.fm Page 326 Thursday, January 17, 2008 3:26 PM

CH A PT E R 1 7 ■ P O W E R SH E L L A N D T HE W OR L D W I DE WE B 327

Figure 17-6. Fiddler showing a request to a password-protected page

HTTP BASIC AUTHENTICATION IS NOT SECURE!

The previous example uses the so-called HTTP Basic authentication mechanism. Looking at the Fiddler screen
shot, you might be guessing already that the authentication mechanism is implemented with one HTTP header. In
our case, this is the Authorization header. There is a security risk with that authentication mechanism: the
user name and password are sent unencrypted over the network! The credentials are not really sent in plain
text; they are base64 encoded. That makes little difference as base64 is not an encryption algorithm and
anyone can decode the password back. That makes the algorithm vulnerable to replay attacks. A malicious
individual can capture the request data and use the Authorization header contents to craft requests that
will get authenticated. There is no need for him or her to even decode the actual user name and password—
all that is needed is providing the correct Authorization header value. Let’s play the bad guys and craft a
malicious request ourselves:

PS> $url = "http://www.pagetutor.com/keeper/mystash/secretstuff.html"
PS> $proxy = "http://localhost:8888"
PS> $headers = @{"Authorization" = "Basic amltbXk6cGFnZQ=="}
PS> .\Get-Url.ps1 -Url $url -Proxy $proxy -Headers $headers
<HTML>
<HEAD>
<TITLE></TITLE>
</HEAD>

Deshev_940-3C17.fm Page 327 Thursday, January 17, 2008 3:26 PM

328 CH AP T E R 1 7 ■ P O W E R SH E L L A N D TH E W O R L D W ID E W E B

<BODY BGCOLOR="#666666" TEXT="#EEEEEE">

<H2 ALIGN="center">MY SECRET STUFF</H2>

</BODY>
</HTML>

I have copied and pasted the Authorization header contents from Fiddler just as a real attacker would
do. The result is disturbing; my request got authenticated without me having to provide the user name or pass-
word. If we really wanted to decode the original user name and password, we could certainly do so using the
Convert class to get the binary data and passing that to the UTF8 encoding object that can turn it into a string:

PS> $encoding = [System.Text.Encoding]::UTF8
PS> $encoded = "amltbXk6cGFnZQ=="
PS> $encoding.GetString([System.Convert]::FromBase64String($encoded))
jimmy:page

The bottom line is that the HTTP Basic authentication mechanism is inherently insecure, and you had
better resort to the more secure mechanisms like Digest authentication or NTLM.

Testing and Validating Web Sites
Downloading content from a remote server is only the beginning. We have to do something
with that content afterward. You can use what you have learned so far to build various utilities
that periodically download newer versions of given pages or crawl a web site to find and report
broken links. This section will demonstrate extracting pieces of information from web pages’
HTML code that we can use later.

Test-Url: Verifying a Page’s Existence
Here is an interesting problem: how do we verify that a page or a file exists on a remote server?
If we could do that, we could use it to create scripts that run periodically making sure that
important files are accessible from the Web. We can also check a dynamically generated list of
files, say, all files linked from a document. The only problem is that getting the entire file just to
confirm that it exists is wasteful, can be slow, and can put too much stress on the web server.
HTTP defines a method, HEAD, designed exactly for that. A HEAD request is similar to the regular
GET requests we have seen so far. The only difference is that the server sends back the response
headers and does not send the actual file content. This makes it possible for us to write a light-
weight script that checks if a file exists on a remote server.

Unfortunately, we cannot use the WebClient class here. The class supports making requests
using different HTTP methods, but that feature has been intended as a means to upload data
to remote servers. WebClient will always send a request body, and that is incompatible with a
HEAD request, which should not have a body according to the HTTP protocol specification. To
create a HEAD request, we have to go a bit deeper and use the System.Net.WebRequest class. The

Deshev_940-3C17.fm Page 328 Thursday, January 17, 2008 3:26 PM

CH A PT E R 1 7 ■ P O W E R SH E L L A N D T HE W OR L D W I DE WE B 329

System.Net.WebClient class uses System.Net.WebRequest internally, and we can certainly do
that too. We need to create a new WebRequest object by passing the URL in the constructor, set
its Method property to “HEAD,” and check the response status code. If the code is different than
200 (OK), we will get an error that we need to trap. We will save that piece of functionality in a
reusable script that we will call Test-Url.ps1. Here is the code:

param ($url)

trap
{
 Write-Host $_
 #clean up the current request
 $request.Abort()
 #an error occurred. ignore it and continue to returning false.
 continue
}

$request = [System.Net.WebRequest]::Create($url)
$request.Method = "HEAD"
$request.TimeOut = 5000
if ($request.GetResponse().StatusCode -eq "OK")
{
 #clean up the current request
 $request.GetResponse().Close()
 return $true
}

#should get here only if we got an error for our web request
return $false

The line that will raise an error if the server or file does not exist is the one containing the
GetResponse method call. If that happens, the error will get suppressed by our trap, and execu-
tion will continue after the if statement. That will make the script return $false. Otherwise, we
will execute the return statement inside the if body, and that will exit the script returning
$true. It is very important that we close the response when we are done and, just in case, abort
the request if an error occurs. If we do not do that, we will end up with a bunch of hung requests
that have not been cleaned up. It seems that the WebRequest class uses an internal connection
pool and failing to properly clean up will cause subsequent requests to fail. Finally, here is how
we can use the script:

PS> .\Test-Url.ps1 http://www.google.com
True
PS> .\Test-Url.ps1 http://www.google.com/nosuchfile
False
PS> .\Test-Url.ps1 http://www.googlec.om/
False

Deshev_940-3C17.fm Page 329 Thursday, January 17, 2008 3:26 PM

330 CH AP T E R 1 7 ■ P O W E R SH E L L A N D TH E W O R L D W ID E W E B

Checking If a Page Contains Broken Links
It is time for us to do something bigger and come up with something useful. A common problem
with all web sites is that page content gets old over time. Files get moved; pages get relocated. The
final result is that links get broken. Manually going over a large site that contains thousands of
links is out of the question. We have to automate this task, so that we can schedule it to run
periodically and proactively inform us about broken links. It is always best if you get a notifica-
tion about a problem before a customer browsing your site reports it.

So, here is the plan: We will get an HTML page from the remote server and try to extract all
links. We will go over the HTML code of the page and get the href attribute values for all <a>
tags. After we do that, we will be able to feed the collected URLs to the Test-Url.ps1 script and
generate a link validity report. Let’s get started!

We will call the script that gets the list of links from a remote page Get-Links.ps1. It is a
short script that features a really obscure regular expression. Here is the code:

param ($Url)

$client = New-Object System.Net.WebClient
$contents = $client.DownloadString($Url)

$pattern = [regex] "<a href=(?<quote>[`"'])(?<url>[^`"']+)\k<quote>"
$matches = $pattern.Matches($contents)

$matches | foreach { $_.Groups["url"].Value }

The part that gets the contents of the page identified by the $Url parameter should be
familiar. The script extracts the links by matching all occurrences of the <a href="..." or
<a href='...' strings. The (?<quote>) and (?<url>) portions of the regular expressions are
named groups. We keep track of the opening quote symbol, because we need to refer to it later
when we match the attribute value close quote. We do that to avoid the situation of incorrectly
closing a single quote with a double quote or vice versa. We collect all symbols inside the quoted
attribute value in the url named group. We then use the Match object’s Groups property to
extract the attribute value. Here is what we get when we run this script on the PowerShell blog’s
start page:

PS> .\Get-Links.ps1 http://blogs.msdn.com/PowerShell/
/powershell/archive/tags/ApartmentState/default.aspx
...
http://blogs.msdn.com/PowerShell
http://www.microsoft.com/technet/scriptcenter/hubs/msh.mspx
...

We get both relative and absolute URLs. Before verifying if they point to something real,
we need to normalize them by turning the relative URLs to absolute. There are two types of
relative URLs that we need to handle: those relative to the current server (the ones starting with
a forward slash, /) and those relative to the current page (the ones that do not start with a
forward slash or http://). To make the former absolute, we need to prepend them with the
server URL. To fix the latter, we need to prepend them with the current page URL. To do that,
we introduce two parameters—$BasePage and $BaseServer—and prepend one or another
depending on the original link value. This is what the code looks like now:

Deshev_940-3C17.fm Page 330 Thursday, January 17, 2008 3:26 PM

CH A PT E R 1 7 ■ P O W E R SH E L L A N D T HE W OR L D W I DE WE B 331

param ($Url, $BasePage, $BaseServer)

$client = New-Object System.Net.WebClient
$contents = $client.DownloadString($Url)

$pattern = [regex] "<a href=(?<quote>[`"'])(?<url>[^`"']+)\k<quote>"
$matches = $pattern.Matches($contents)

$links = ($matches | foreach { $_.Groups["url"].Value })
$links | foreach {
 if ($_ -like "http://*")
 {
 return $_
 }
 elseif ($_ -like "/*")
 {
 return "$BaseServer$_"
 }
 else
 {
 return "$BasePage$_"
 }
}

Running it for the PowerShell blog, we get this:

PS> $url = "http://blogs.msdn.com/PowerShell/"
PS> .\Get-Links.ps1 -Url $url -BasePage $url `
 -BaseServer http://blogs.msdn.com

http://blogs.msdn.com/powershell/archive/tags/ApartmentState/default.
aspx
...

This time, we get all links as absolute URLs. We used the $url variable as both the docu-
ment URL and as the base page. Those values would have been different if we had a page name
after the slash. For example, the base page for http://www.example.com/example.html would be
http://www.example.com/.

It is about time we feed the links to Test-Url.ps1. We do that with the foreach cmdlet:

PS> .\Get-Links.ps1 -Url $url -BasePage $url `
-BaseServer http://blogs.msdn.com | `
foreach { $_, (.\Test-Url.ps1 $_) }

http://blogs.msdn.com/powershell/archive/tags/ApartmentState/default.a
spx
True
http://blogs.msdn.com/powershell/archive/tags/CMDLET/default.aspx
True
...

Deshev_940-3C17.fm Page 331 Thursday, January 17, 2008 3:26 PM

332 CH AP T E R 1 7 ■ P O W E R SH E L L A N D TH E W O R L D W ID E W E B

The remote server returned an error: (405) Method Not Allowed.
http://imdb.com/title/tt0101669/quotes
False
...
http://blogs.msdn.com/powershell/archive/tags/Impersonation/default.as
px
True
PS>

The foreach block outputs an array of two elements for every URL being checked: the URL
and the check result. The only URL that fails our check in the preceding code is the one pointing to
the imdb.com site. Looking at the error message, the resource pointed by the URL is there; it just
happens that the imdb.com HTTP server does not allow the HEAD request method. In cases like
that, we would have to resort to GET requests. I will leave that as an exercise for you.

Working with News Feeds
News feeds or RSS feeds have become quite popular in the past several years. Initially conceived as
a means to publish web site update notifications, they have quickly become the preferred way
to publish any type of updates from any program. People have been using them to announce
new posts on personal web logs (blogs) or Internet forums, new files in download sites, and all
sorts of updates on all types of objects. Looking at the RSS acronym used everywhere, one may
think that there is a well defined and widely accepted standard for publishing those news items.
Sadly, this is not the case. The RSS acronym has been used to mean different things, and it has
several versions and variations as a format, each having its own advantages and disadvantages.
Looking at the different formats, I am tempted to say that the only thing in common among all
of them is that they are all based on XML.

There are two major branches of RSS file formats: one is based on the Resource Description
Framework (RDF) recommendation; the other is not. Here are the formats that are based on
the RDF recommendation:

• RSS 0.90: Developed by Netscape, this acronym stood for RDF Site Summary. The format
was based on an early draft of the RDF recommendation.

• RSS 1.0: Again standing for RDF Site Summary, this is an open format, developed and
based on the final RDF recommendation. As such, it is not compatible with RSS 0.90.

• RSS 1.1: This is another open format that was meant to replace RSS 1.0. It was not
endorsed by any major organization or group and is not very popular.

The other important branch is the RSS 2.* branch. Those formats are not based on RDF
and are not compatible with the preceding ones:

• RSS 0.91: This simplified format released by Netscape is not based on RDF, and the acronym
stands for Rich Site Summary. This is one of the most popular formats to date.

• RSS 0.92 through 0.94: Those are extensions to the RSS 0.91 format, which are mostly
compatible with it.

• RSS 2.0.1: This is an update released shortly after RSS 2.0. It is mostly compatible with the
other formats in this branch, and the only major addition is the explicit extensibility support
that was added. At this point in time, the acronym stands for Really Simple Syndication.

Deshev_940-3C17.fm Page 332 Thursday, January 17, 2008 3:26 PM

CH A PT E R 1 7 ■ P O W E R SH E L L A N D T HE W OR L D W I DE WE B 333

There is another feed format that has grown in popularity: Atom. It is an attempt at getting
a clean start at defining a better feed format. It has been standardized and adopted by large
organizations, such as Google.

I can see that your head is starting to spin from all those formats. In this chapter, we will
try to support one RSS format from the two branches: RSS 1.0 and RSS 2.0. In addition, we will
support Atom feeds. Being able to support the three most popular formats will enable us to
write scripts that can consume updates published by other programs and react to various events.

Getting Feeds
Let’s start with the Atom format. We will need to download the XML content of the feed docu-
ment and will need to extract relevant information. PowerShell’s has excellent support for XML
data so that should not be a problem. Let’s now create a script called Get-RssFeed.ps1 that we
will gradually evolve. In the beginning, we will need to get a list of updates and their titles and
message bodies. We will use the PowerShell team blog’s Atom feed for our tests. Here is the code:

param ($url)

$client = New-Object System.Net.WebClient

$contents = $client.DownloadString($url)
$feed = [xml] $contents

function Get-AtomPosts($feed)
{
 $feed.feed.entry | foreach {
 @{ "Title" = $_.title; "Body" = $_.content.$("#text") }
 }
}

Get-AtomPosts $feed

We get the XML contents as a string and convert them to an XML document. We then go
over the Atom document structure to create a list of Hashtable objects, each of them having a
Title and Body values. The Atom XML format has a root <feed> element that has a collection of
<entry> objects. Each entry has a <title> element and a <content> element. The latter’s inner
text holds the entry body. Let’s run the code and see what happens:

PS> .\Get-RssFeed.ps1 http://blogs.msdn.com/powershell/atom.xml

Name Value
---- -----
Body <P>Next week we'll be releasing a Co...
Title CTP: Watch This Space
Body <p>Next week we'll be releasing a Co...
Title CTP: Versioning
...

Deshev_940-3C17.fm Page 333 Thursday, January 17, 2008 3:26 PM

334 CH AP T E R 1 7 ■ P O W E R SH E L L A N D TH E W O R L D W ID E W E B

I know what you are thinking—the <P> tags mean that the entry bodies contain HTML text.
We can use that fact to format entries and display them in a browser. Let’s try it with the first entry:

PS> $url = "http://blogs.msdn.com/powershell/atom.xml"
PS> $entries = .\Get-RssFeed.ps1 $url
PS> $entry = $entries[0]
PS> $html = @"
<html>
<head>
<title>$($entry.Title)</title>
</head>
<body>
$($entry.Body)
</body>
</html>
"@
PS> Set-Content -path entry.html -value $html
PS> Invoke-Item entry.html

We generated a small HTML document and opened it in the browser. Figure 17-7 shows
how that looks like in Mozilla Firefox.

Figure 17-7. Mozilla Firefox displaying our first feed entry

Deshev_940-3C17.fm Page 334 Thursday, January 17, 2008 3:26 PM

CH A PT E R 1 7 ■ P O W E R SH E L L A N D T HE W OR L D W I DE WE B 335

Let’s now move on to adding RSS 2.0 support. The logic is almost the same, with the only
difference being that we have to account for the different structure that RSS 2.0 documents
have. The root element for our XML document is now <rss>. It usually contains one <channel>
element, which in turn, contains many <item> elements. The <item> elements are our entries—
we need their title and description properties. Here is the code:

param ($url)

$client = New-Object System.Net.WebClient

$contents = $client.DownloadString($url)
$feed = [xml] $contents

function Get-RssPosts($feed)
{
 $feed.rss.channel.item | foreach {
 @{ "Title" = $_.title; "Body" = $_.description }
 }
}

Get-RssPosts $feed

It is a good thing that the server software that PowerShell team blog runs on supports RSS 2.0
feeds too. We will use that one in our experiments. Here is what happens when we call our script:

PS> .\Get-RssFeed.ps1 http://blogs.msdn.com/powershell/rss.xml

Name Value
---- -----
Body <P>Next week we'll be releasing a Co...
Title CTP: Watch This Space
Body <p>Next week we'll be releasing a Co...
Title CTP: Versioning

We want to generate a collection of Hashtable objects, each having a Title and Body prop-
erties just like we did with the Atom entries.

Finally, let’s handle the RDF branch of the RSS formats. We will use the Slashdot.org RSS
feed; it uses the RSS 1.0 format. The RDF formats have a root <RDF> element that contains a
number of <item> child elements. We are interested in each item’s title and description
properties. Here is the code that handles that format:

Deshev_940-3C17.fm Page 335 Thursday, January 17, 2008 3:26 PM

336 CH AP T E R 1 7 ■ P O W E R SH E L L A N D TH E W O R L D W ID E W E B

param ($url)

$client = New-Object System.Net.WebClient

$contents = $client.DownloadString($url)
$feed = [xml] $contents

function Get-RdfPosts($feed)
{
 $feed.RDF.item | foreach {
 @{ "Title" = $_.title; "Body" = $_.description }
 }
}

Get-RdfPosts $feed

Here is what we get after running the script:

PS> .\Get-RssFeed.ps1 http://rss.slashdot.org/Slashdot/slashdot

Name Value
---- -----
Body ThinkingInBinary writes "The results...
Title Carnegie Mellon Wins Urban Challenge
Body einhverfr writes "According to an ar...
Title Ultracapacitors Soon to Replace Many...

We now have three versions of the same script that fetch a feed document, process it, and
emit a collection of feed entries in a unified format. We can now try to merge the three versions
into one. To do that, we need some code that will check the structure of the XML document
that we got from the server. According to the structure, the code will process the document
using Get-AtomPosts, Get-RssPosts, or Get-RdfPosts. We will check the document root element
to determine what file format we have. Here is the final version of the code:

param ($url)

$client = New-Object System.Net.WebClient

$contents = $client.DownloadString($url)
$feed = [xml] $contents

function Get-RdfPosts($feed)
{
 $feed.RDF.item | foreach {
 @{ "Title" = $_.title; "Body" = $_.description }
 }
}

Deshev_940-3C17.fm Page 336 Thursday, January 17, 2008 3:26 PM

CH A PT E R 1 7 ■ P O W E R SH E L L A N D T HE W OR L D W I DE WE B 337

function Get-AtomPosts($feed)
{
 $feed.feed.entry | foreach {
 @{ "Title" = $_.title; "Body" = $_.content.$("#text") }
 }
}

function Get-RssPosts($feed)
{
 $feed.rss.channel.item | foreach {
 @{ "Title" = $_.title; "Body" = $_.description }
 }
}

if ($feed.feed -ne $null)
{
 Get-AtomPosts $feed
}
elseif ($feed.rss -ne $null)
{
 Get-RssPosts $feed
}
elseif ($feed.RDF -ne $null)
{
 Get-RdfPosts $feed
}
else
{
 throw "Unsupported feed format"
}

The code tries several strategies and throws an exception if it finds nothing suitable. We
can now run this script with any of the preceding feed formats without having to remember
which URL corresponds to which format:

PS> .\Get-RssFeed.ps1 http://blogs.msdn.com/powershell/atom.xml

Name Value
---- -----
Body <P>Next week we'll be releasing a Co...
Title CTP: Watch This Space
...

PS> .\Get-RssFeed.ps1 http://blogs.msdn.com/powershell/rss.xml

Deshev_940-3C17.fm Page 337 Thursday, January 17, 2008 3:26 PM

338 CH AP T E R 1 7 ■ P O W E R SH E L L A N D TH E W O R L D W ID E W E B

Name Value
---- -----
Body <P>Next week we'll be releasing a Co...
Title CTP: Watch This Space
...

PS> .\Get-RssFeed.ps1 http://rss.slashdot.org/Slashdot/slashdot

Name Value
---- -----
Body ThinkingInBinary writes "The results...
Title Carnegie Mellon Wins Urban Challenge
...

Calling Web Services
Web services, or also called XML web services, have been a hot topic for several years now. They are
in essence a remoting mechanism, a system designed to enable machine-to-machine commu-
nication. Based on an XML format for exchanging messages, the service invocation effectively
represents a method call. The remote object and its target method are fully qualified with a
URL and parameters, and results are transported using XML messages, typically over HTTP.

So, why are web services important to us? Similar to RSS feeds, they are a widely used
method of exchanging data between systems. Many applications and services expose informa-
tion using web services, and we can use web services to get data from remote servers, send data
to those servers, or issue commands that will affect their behavior. The best thing about web
services is that they are completely implementation agnostic, and we can use them as a way to
connect heterogeneous systems implemented using different technologies. In this chapter, we
will focus on web services implemented with Microsoft .NET, but the same approach should
work for services implemented using other technologies such as Java, PHP, and so on.

Calling Web Services Using HTTP GET Requests
Usually, web services are not called using raw HTTP requests; many programming environ-
ments analyze the Web Service Description Language (WSDL) manifest associated with the
web service and generate local proxy objects that mimic the remote object’s methods. Those
proxies take care of transporting the parameters and return values to the client code. We can
certainly use .NET’s tools and generate proxy objects that can allow us to work in a similar
manner. The drawback to that approach, though, is that you have to either generate code and
compile temporary assemblies or use some serious .NET programming black magic to generate in-
memory assemblies that contain the proxy objects. There is a simpler way—PowerShell makes
handling XML so easy that we can craft an HTTP request with System.Net.WebClient and parse
the XML that we get back from the remote service. The code that we need to process the XML
result is about two lines long.

To demonstrate how to call a web service using a HTTP GET request, we will get the weather
forecast from http://www.webservicex.net/WeatherForecast.asmx. We will use the
GetWeatherByPlaceName remote method. To pass the PlaceName parameter, we will need to
append a query string parameter to the URL—?PlaceName=<CityName>. We will save our code to

Deshev_940-3C17.fm Page 338 Thursday, January 17, 2008 3:26 PM

CH A PT E R 1 7 ■ P O W E R SH E L L A N D T HE W OR L D W I DE WE B 339

a script file named Call-WebServiceGet.ps1. My favorite place for this example is New York.
Here is the code that initiates the request and processes the result:

param ($Proxy)

$serviceUrl = "http://www.webservicex.net/WeatherForecast.asmx"
$city = "New York"
$url = "$serviceUrl/GetWeatherByPlaceName?PlaceName=$city"

$client = New-Object System.Net.WebClient

if ($Proxy)
{
 $proxyConfig = New-Object System.Net.WebProxy -arg $Proxy
 $client.Proxy = $proxyConfig
}

$contents = $client.DownloadString($url)
$xmlDoc = [xml] $contents
$xmlDoc.WeatherForecasts.Details | `
 foreach {
 $_.WeatherData | select Day,MaxTemperatureC,MaxTemperatureF
 }

The code assembles a URL that contains the ?PlaceName=New York query string parameter.
We convert the resulting string to an XML document. That document has a root node of
<WeatherForecasts>. We are interested in the forecast for the next seven days that is contained
by the <Details> child node. It is represented by a number of <WeatherData> objects stored
inside. We pipe the WeatherData objects through the select cmdlet to get a formatted report
that contains the day and the maximum temperatures in Celsius and Fahrenheit. For diagnos-
tics purposes, we have added support for a proxy server, so that we can pipe the request through
Fiddler and see what goes on under the hood. Here is what we get after running our script:

PS> .\Call-WebServiceGet.ps1 -Proxy http://localhost:8888

Day MaxTemperatureC MaxTemperatureF
--- --------------- ---------------
Monday, November 05,... 15 59
Tuesday, November 06... 13 56
Wednesday, November ... 11 52
Thursday, November 0... 8 47
Friday, November 09,... 8 47
Saturday, November 1... 10 50
Sunday, November 11,... 12 53

Figure 17-8 shows Fiddler’s view of the request. The Session Inspector tab shows the raw
request and the XML view of the response.

Deshev_940-3C17.fm Page 339 Thursday, January 17, 2008 3:26 PM

340 CH AP T E R 1 7 ■ P O W E R SH E L L A N D TH E W O R L D W ID E W E B

Figure 17-8. Fiddler showing a HTTP GET request to a web service

Calling Web Services Using HTTP POST Requests
The GET HTTP method is the easiest to use, but the thing that makes it easiest to use is also its
biggest weakness. The parameters are sent in the query string part of the URL, and that space
has limits. The World Wide Web Consortium (W3C) documents suggest that user agents limit
URLs and query string parameters to 2KB of data. We have to use a different method of invoking a
web service if we need to provide larger amounts of data as the input parameter. HTTP POST
parameters are again represented as name=value strings similar to query string parameters. The
difference from a GET request is that those parameters are sent in the request body and the
maximum size is limited to the physical capacity of the server and the network. We do not need
to encode parameters ourselves; this is fully supported by System.Net.WebClient. The only
thing we have to do is stuff the parameters in a NameValueCollection object and pass that to the
UploadValues method. A NameValueCollection is really a dictionary, similar to a Hashtable that
has strings as its keys and values. We will create a new script, Call-WebServicePost.ps1, that
will get the weather forecast for the next week for New York, this time using a POST request.
Here is the code:

Deshev_940-3C17.fm Page 340 Thursday, January 17, 2008 3:26 PM

CH A PT E R 1 7 ■ P O W E R SH E L L A N D T HE W OR L D W I DE WE B 341

param ($Proxy)

$serviceUrl = "http://www.webservicex.net/WeatherForecast.asmx"
$url = "$serviceUrl/GetWeatherByPlaceName"

$values = New-Object Collections.Specialized.NameValueCollection
$values["PlaceName"] = "New York"

$client = New-Object System.Net.WebClient

if ($Proxy)
{
 $proxyConfig = New-Object System.Net.WebProxy -arg $Proxy
 $client.Proxy = $proxyConfig
}

$rawData = $client.UploadValues($url, $values)

$contents = [Text.Encoding]::UTF8.GetString($rawData)
$xmlDoc = [xml] $contents
$xmlDoc.WeatherForecasts.Details | `
 foreach {
 $_.WeatherData | select Day,MaxTemperatureC,MaxTemperatureF
 }

This time, we add the PlaceName parameter to the $values object and call the UploadValues
method. By default, UploadValues initiates a POST request, so we do not need to explicitly state
that. There is a slight inconvenience related to using UploadValues; it returns an array of bytes.
We store those bytes in the $rawData variable, and we have to resort to the UTF8 encoding object
to turn those bytes into a string. The rest of the code is absolutely the same as in our GET example;
the returned XML has absolutely the same format. As you would expect, the result from running
the script looks pretty similar:

PS> .\Call-WebServicePost.ps1 -Proxy http://localhost:8888

Day MaxTemperatureC MaxTemperatureF
--- --------------- ---------------
Monday, November 05,... 15 59
Tuesday, November 06... 13 56
Wednesday, November ... 11 52
Thursday, November 0... 8 47
Friday, November 09,... 8 47
Saturday, November 1... 10 50

Figure 17-9 shows Fiddler’s view of the request. Note that the parameters are now trans-
mitted in the request body, and the resulting XML is the same.

Deshev_940-3C17.fm Page 341 Thursday, January 17, 2008 3:26 PM

342 CH AP T E R 1 7 ■ P O W E R SH E L L A N D TH E W O R L D W ID E W E B

Figure 17-9. Fiddler showing an HTTP POST request to a web service

Calling Web Services Using the SOAP Protocol
SOAP stands for Simple Object Access Protocol. It is a specification for representing web service
method calls and object method calls in general as XML messages. The SOAP protocol is trans-
port agnostic. Although XML messages are typically transported in HTTP POST requests, we are
certainly not limited to that. There are projects that can transport a SOAP message over SMTP
in a MIME-encoded e-mail message. We will not go that route, however; we will focus on SOAP
messages over HTTP POST requests.

First, why do we need to bother with another way to format a POST request when we already
have one? The POST method that we just looked at is far simpler to use than SOAP. The problem
with the GET and POST methods you have seen so far is that they are not standardized. They are
Microsoft extensions to calling web services and may not be available for web services imple-
mented using non-Microsoft technologies. In addition, the HTTP-GET and HTTP-POST methods
for calling a service are disabled by default; they may not be enabled for the service we are trying to
call. SOAP, even though it is the most complex of the three methods, is the most widely supported
protocol. It will work for services where the other methods may fail.

Let’s see what a sample SOAP message looks like. Here is the SOAP message that we can
use to get the weather forecast for New York using our sample web services:

Deshev_940-3C17.fm Page 342 Thursday, January 17, 2008 3:26 PM

CH A PT E R 1 7 ■ P O W E R SH E L L A N D T HE W OR L D W I DE WE B 343

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <GetWeatherByPlaceName xmlns="http://www.webservicex.net">
 <PlaceName>New York</PlaceName>
 </GetWeatherByPlaceName>
 </soap:Body>
</soap:Envelope>

The preceding code may seem daunting, but most of it is just boilerplate code that we can
copy and paste without digging much deeper. According to the specification, we need to have
a <soap:Envelope> element with a <soap:Body> one inside. We then have to include an element
with the name of the web service method that should contain elements containing each of the
parameter values. In addition to sending the SOAP message in the request body, we need to
send a SOAPAction request header with a value containing the URL of our web service and the
method we are calling. Another necessary header is the Content-Type one; we need to indicate
to the server that we are submitting XML data encoded in UTF-8. We will call our weather fore-
cast service using SOAP from a new script called Call-WebServiceSoap.ps1. That script will use
the System.Net.WebClient UploadString method to post the SOAP message to the server. Here
is the code:

param ($Proxy)

$serviceUrl = "http://www.webservicex.net/WeatherForecast.asmx"

$city ="New York"

$soapMessage = @"
<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <GetWeatherByPlaceName xmlns="http://www.webservicex.net">
 <PlaceName>$city</PlaceName>
 </GetWeatherByPlaceName>
 </soap:Body>
</soap:Envelope>
"@

$client = New-Object System.Net.WebClient

Deshev_940-3C17.fm Page 343 Thursday, January 17, 2008 3:26 PM

344 CH AP T E R 1 7 ■ P O W E R SH E L L A N D TH E W O R L D W ID E W E B

if ($Proxy)
{
 $proxyConfig = New-Object System.Net.WebProxy -arg $Proxy
 $client.Proxy = $proxyConfig
}

$client.Headers.Add("SOAPAction", `
 "http://www.webservicex.net/GetWeatherByPlaceName")
$client.Headers.Add("Content-Type", "text/xml; charset=utf-8")

$contents = $client.UploadString($serviceUrl, $soapMessage)

$xmlDoc = [xml] $contents

$response = $xmlDoc.Envelope.Body.GetWeatherByPlaceNameResponse
$response.GetWeatherByPlaceNameResult.Details | `
 foreach {
 $_.WeatherData | select Day,MaxTemperatureC,MaxTemperatureF
 }

The script is certainly longer, but apart from the long string that contains the SOAP message,
the code does pretty much the same thing as in the scripts you have seen so far. We are using a
double-quoted string to generate the SOAP message, so that we can easily inject the $city vari-
able value inside. The request has to carry two important headers: SOAPAction and Content-Type.
The former tells the server which web service method to invoke, and the latter specifies that the
message body contains XML text encoded using UTF-8. The resulting XML is a bit different
than our previous results too; it contains another <soap:Envelope> with a <soap:Body> element
inside. The actual response is wrapped in a <GetWeatherByPlaceNameResponse> element. Once
we get to that element, we can get to the <Details> element inside that holds the familiar
WeatherData objects. Here is the result we get after running our script:

PS> .\Call-WebServiceSoap.ps1 -Proxy http://localhost:8888

Day MaxTemperatureC MaxTemperatureF
--- --------------- ---------------
Monday, November 05,... 15 59
Tuesday, November 06... 13 56
Wednesday, November ... 11 52
Thursday, November 0... 8 47
Friday, November 09,... 8 47
Saturday, November 1... 10 50

We are getting the same property values and formatting the data in the same way, so there
is no surprise that the output looks similar to what we have seen before. Figure 17-10 shows the
request and response messages in Fiddler’s XML view.

Deshev_940-3C17.fm Page 344 Thursday, January 17, 2008 3:26 PM

CH A PT E R 1 7 ■ P O W E R SH E L L A N D T HE W OR L D W I DE WE B 345

Figure 17-10. Fiddler showing the request and response SOAP messages involved in calling a
web service

Handling FTP Transactions
It is a little known fact that System.Net.WebClient can handle FTP connections too. Most people
mean HTTP transactions when they refer to the Web, and in a sense, that makes the WebClient
name a bit misleading. The FTP support this class offers is limited in that it only supports passive
FTP connection. Passive FTP mode is the default for many clients; it means that the client connects
to the server and is then given a new address and port to connect to. Active mode, where the
server connects back to the client, is not supported by the WebClient class. FTP is an ancient
protocol, and it has been long known to have some security issues. For one thing, the creden-
tials are sent with no encryption over the network, and that makes us vulnerable to traffic sniffing.
When possible, avoid this protocol and replace it with one of the two secure FTP protocols:
Secure FTP (FTP sessions running over encrypted SSH channels) or SSH File Transfer Protocol,
both of which have built-in encryption.

Downloading Files from an FTP Server
Downloading a file from an FTP server using the WebClient class looks like downloading a file
from a password-protected HTTP server. We have to set up a NetworkCredential object with
our user name and password and call the DownloadFile method. We can use DownloadString

Deshev_940-3C17.fm Page 345 Thursday, January 17, 2008 3:26 PM

346 CH AP T E R 1 7 ■ P O W E R SH E L L A N D TH E W O R L D W ID E W E B

too, but let’s assume here that we want to automatically save the file to a new location. Let’s
create a simple script called Get-Ftp.ps1 that will accept four parameters: the URL for our
target file, a local file, user name, and password. Here is the code:

param ($url, $file, $userName, $password)

$client = New-Object System.Net.WebClient

$credentials = New-Object System.Net.NetworkCredential `
 -arg $userName, $password
$client.Credentials = $credentials

$client.DownloadFile($url, $file)

We use this by providing an ftp:// URL and an absolute local path. We form an absolute
path that points to the current folder by using the Join-Path and Get-Location cmdlets:

PS> .\Get-Ftp.ps1 -url ftp://deshev.com/test.txt `
-file (Join-Path (Get-Location) test.txt) `
-userName ftptest -password testpass

PS> type test.txt
Test file downloaded from FTP.

Uploading Files to an FTP Server
Again, uploading FTP files is similar to working with HTTP. Uploading a file to a remote FTP
server using WebClient looks exactly like uploading a file using an HTTP POST request. We can
read the entire file contents and pass that to the UploadString method. The better alternative
is to call the UploadFile method and pass the file name. We will do that in a script called
Put-Ftp.ps1 that accepts four parameters: the URL of the uploaded file, the local file name,
user name and password. Here is the code that does the actual uploading:

param ($url, $file, $userName, $password)

$client = New-Object System.Net.WebClient

$credentials = New-Object System.Net.NetworkCredential `
 -arg $userName, $password
$client.Credentials = $credentials

$client.UploadFile($url, $file)

Again, we call the script by pointing to our test FTP server and passing the absolute path to
the local file that we want uploaded. Let’s get the Get-Ftp.ps1 file and upload it to the server:

PS> .\Put-Ftp.ps1 -url ftp://deshev.com/Get-Ftp.ps1 `
-file (gi Get-Ftp.ps1).FullName `
-user ftptest -password testpass

PS>

Deshev_940-3C17.fm Page 346 Thursday, January 17, 2008 3:26 PM

CH A PT E R 1 7 ■ P O W E R SH E L L A N D T HE W OR L D W I DE WE B 347

We do not get an error, and everything seems to be fine. Figure 17-11 shows the uploaded
file on our FTP server.

Figure 17-11.The Windows Vista Explorer window showing the contents of the FTP server root
folder with our newly uploaded file

Summary
Maybe I should have named this chapter “The Cult of System.Net.WebClient.” We can do almost
everything related to the Web or to FTP transfers with this class. Most often, I need simple file
download functionality from a web or FTP server. I need file uploads and HTTP POST requests
relatively often, yet those are significantly rarer than file downloads. We covered a lot of advanced
scenarios in this chapter: processing HTML and XML is not something that you see every day.
Still, the Web hosts tons of different HTML- and XML-based files that you may encounter. When
you do, you will know how to process them with PowerShell. I cannot stress enough the sheer
power behind PowerShell’s XML processing facilities; several lines of code are enough to process
and extract data from an RSS feed or a SOAP message. I am sure that this will hold true for other
XML-based file formats.

Probably the most important thing you can take away from this chapter is the Fiddler tool.
This little program is indispensable for anyone working with HTTP. In addition to helping us
troubleshoot problems, it can help a lot with automating a task that you know how to perform
manually. Want to automate an action you do routinely on a web site? Configure your browser’s
proxy settings so that its requests go through Fiddler and see what gets sent to the server. Then,
you need to just send the same data and headers from your PowerShell script to automate the task.

Deshev_940-3C17.fm Page 347 Thursday, January 17, 2008 3:26 PM

349

■ ■ ■

C H A P T E R 1 8

Sending E-mail

All types of system automation will sooner or later have to deal with e-mail. Long running
processes often call home when they are finished. Complex operations complete by sending
their execution log to a central place. Failures and special conditions that require user actions
usually distribute notifications via e-mail to all interested parties. Unlike some automation
environments, PowerShell does not provide a built-in facility that sends e-mail. This may seem
like a big omission at first, but things get a lot better when we examine the alternatives. The
Microsoft.NET framework 2.0 already provides excellent support for sending SMTP mail with
its System.Net.Mail classes, and we will use those to build a script that can do the job for us.
PowerShell Community Extensions, a popular open source project, also provides a cmdlet for
sending mail that is built on top of System.Net.Mail. I will cover the PowerShell Community
Extensions in greater detail in Chapter 21.

Why write our own script instead of just using the existing tool? Scripting .NET objects and
sending mail on our own has several advantages over using an extension cmdlet: it provides us
with greater flexibility and can cater to our specific needs, and it frees us from the requirement
of having to install an extension that is a usually a hassle and might require administrator priv-
ileges on the target machine.

Using System.Net.Mail
System.Net.Mail is a namespace in the .NET 2.0 Framework that provides classes dealing with
all the intricacies involved with sending e-mail. Those classes know how to create a mail
message, how to encode it and its attachments, and how to talk the server into sending it to the
correct recipients. The basic mail sending functionality is quite simple to achieve: we create a
MailMessage object; set it up with the correct recipient address, subject, and body; and pass it
to an SmtpClient that actually sends the message over the wire. The following sample script,
send-plain.ps1, does exactly that:

#create the mail message
$mail = New-Object System.Net.Mail.MailMessage

#set the addresses
$mail.From = New-Object System.Net.Mail.MailAddress("test@deshev.com")
$mail.To.Add("test@deshev.com")

Deshev_940-3C18.fm Page 349 Thursday, January 17, 2008 3:28 PM

350 CH AP T E R 1 8 ■ S E N D IN G E - M A IL

#set the content
$mail.Subject = "Hello PowerShell";
$mail.Body = "Sending mail is easy!";

#send the message
$smtp = New-Object System.Net.Mail.SmtpClient -argumentList "mail.deshev.com"
$smtp.Credentials = New-Object System.Net.NetworkCredential `
 -argumentList "test@deshev.com","testpass"
$smtp.Send($mail)

Note that we can even spoof the From address if we want to. Please do not abuse that! The
SmtpClient object requires some information about our mail server. We pass the server address
to the constructor, and then we provide a new NetworkCredential object that contains our user
name and password. Note that we are using dummy values for the mail address, the mail server
configuration, and the login credentials. You will have to obtain the correct settings for your
mail server and SMTP account.

Keeping all sorts of configuration scattered in various scripts is not a good idea, as we have
to remember what goes where and change many files when something in our configuration
changes—not to mention that it is a security risk to embed credentials in plain text files. We will
move those settings to a better location later. A useful thing to know is that SmtpClient supports
SSL authentication and even works with Google’s free Gmail service. For all practical needs, we
do not need better SMTP support than that!

Building a Reusable Script
The script in the previous section does a fine job of sending a simple message, but it is not reus-
able at all. Should we have to send a message with a different recipient, we would have to copy
the code, paste it to a new script, and make the change there. That leaves us with two almost
identical scripts that are twice as hard to maintain. We need to move the mail server configura-
tion and the user credentials to a separate place and include them in our scripts. Additionally,
we have to abstract the message data, the recipient, subject, and body and introduce parameters
that allow us to pass different values from the command line. Let’s start with the configuration.

A slightly more secure location for storing configuration data is the PowerShell user profile
script. It is stored in the Documents folder on Windows Vista and My Documents on Windows XP
and earlier. The profile script resides inside the WindowsPowerShell subfolder and is named
profile.ps1 or Microsoft.PowerShell_profile.ps1. Create a file with one of those names in
that location if you do not have one already. Which one of the two names should you pick? It
does not matter—PowerShell will execute both scripts if it finds them. We will move the mail
server configuration there:

#mail server configuration
$smtpServer = "mail.deshev.com"
$smtpUser = "test@deshev.com"
$smtpPassword = "testpass"

After restarting PowerShell, the three variables—$smtpServer, $smtpUser, and $smtpPassword—
will always be available to our scripts. Since we have those variables declared in the profile

Deshev_940-3C18.fm Page 350 Thursday, January 17, 2008 3:28 PM

C HA P TE R 1 8 ■ SE N DI N G E -M A I L 351

script, we can now delete their declaration from the original script. For an in-depth description
of the PowerShell profile scripts, please refer to Chapter 11.

To separate our message data from our script and introduce parameters, we introduce two
functions: Create-Message, which will configure a MailMessage object, and Send-Message, which
will work with an SmtpClient object. Create-Message takes the recipient address, message subject,
and message body as parameters and returns a MailMessage object:

function Create-Message([string] $to = $(throw "'to' cannot be null"),
 [string] $subject = "(no subject)",
 [string] $body = $(throw "'body' cannot be null"))
{
 $message = New-Object System.Net.Mail.MailMessage
 $message.From = New-Object System.Net.Mail.MailAddress `
 ("test@deshev.com")

 #configure recipients
 $message.To.Add($to)

 $message.Subject = $subject
 $message.Body = $body

 return $message
}

We require that callers always pass the $to and $body parameters and default to a “(no
subject)” line if the $subject parameter is missing.

The Send-Message function takes a single parameter, a preconfigured MailMessage object:

function Send-Message([System.Net.Mail.MailMessage] $message)
{
 $smtp = New-Object System.Net.Mail.SmtpClient -argumentList $smtpServer
 $smtp.Credentials = New-Object System.Net.NetworkCredential -argumentList `
 $smtpUser,$smtpPassword
 $smtp.Send($message)
}

It is best that we move those functions to a separate file and include it as a function library
in scripts that we execute. We will call the new file mailutils-plain.ps1 and include it with the
dot-sourcing notation like this:

. .\mailutils-plain.ps1

Our driver script, send-mail-plain.ps1, now looks like this:

param([string] $to = $(throw "'to' cannot be null"),
 [string] $subject = "(no subject)",
 [string] $body = $(throw "'body' cannot be null"))

. .\mailutils-plain.ps1

Deshev_940-3C18.fm Page 351 Thursday, January 17, 2008 3:28 PM

352 CH AP T E R 1 8 ■ S E N D IN G E - M A IL

$message = Create-Message $to $subject $body

Send-Message $message

All it does is get parameters from the command line, pass them to Create-Message, and call
Send-Message afterward. Here is how we use our script:

.\send-mail-plain.ps1 -to test@deshev.com -subject "Look, Ma" `
 -body "I'm a reusable script!"

Configuring Recipients
Our current solution has the limitation of being able to send the message to only one recipient.
Of course, we can loop or pipe a collection through ForEach-Object and call the script multiple
times, but that is quite inefficient, as it would always open a new connection to the server, send
the mail, and then close it just to open it back on the next iteration. Performance is not the only
problem: there is no way for us to set up a CC or BCC list for our carbon copy recipients. In
addition, we often want to use a friendly name for our recipients, so that users see a real name
like “Mike Smith | ACME Corp.” instead of a plain “msmith@acme.com.”

Adding multiple recipients requires that we pass a collection of addresses as a parameter
to our script. We then have to change the Create-Message function and make it go over that
collection. The easiest way to do that is to use foreach:

$to | foreach { $message.To.Add($_) }

foreach is nice enough to work with a single item as if it were passed a collection with one item,
so that we do not have to pass an array when we need to send a message to one recipient only.

Configuring the CC and BCC recipients for a message works in the same way as configuring
for To recipients does: we have to use the MailMessage class’s CC and BCC properties. Again, we
use foreach to allow for multiple recipients:

$cc | foreach { $message.CC.Add($_) }
$bcc | foreach { $message.BCC.Add($_) }

Our Create-Message function now becomes this:

function Create-Message($to = $(throw "'to' cannot be null"),
 $cc = @(),
 $bcc = @(),
 [string] $subject = "(no subject)",
 [string] $body = $(throw "'body' cannot be null"))
{
 $message = New-Object System.Net.Mail.MailMessage
 $message.From = New-Object System.Net.Mail.MailAddress("test@deshev.com")

 #configure recipients

 $to | foreach { $message.To.Add($_) }
 $cc | foreach { $message.CC.Add($_) }
 $bcc | foreach { $message.BCC.Add($_) }

Deshev_940-3C18.fm Page 352 Thursday, January 17, 2008 3:28 PM

C HA P TE R 1 8 ■ SE N DI N G E -M A I L 353

 $message.Subject = $subject
 $message.Body = $body
 return $message
}

Note that we default to empty collections for the $cc and $bcc parameters, so that the user
is not required to provide them. The updated Create-Message function resides in a new version
of our script library: mailutils-multiple-recipients.ps1. We also need to change the driver
script to add the $cc and $bcc parameters and pass them to Create-Message:

param($to = $(throw "'to' cannot be null"),
 $cc = @(),
 $bcc = @(),
 [string] $subject = "(no subject)",
 [string] $body = "")

. .\mailutils-multiple-recipients.ps1

$message = Create-Message $to $cc $bcc $subject $body
Send-Message $message

Note that the driver script now includes the new version of our script library. We name the
driver script in a similar fashion, send-mail-multiple-recipients.ps1. Here is how we can use
our script to send a message to many people as direct, carbon copy, or blind carbon copy
recipients:

.\send-mail-multiple-recipients.ps1 -to @("test@deshev.com", `
 "test@deshev.com") -cc @("test@deshev.com", "test@deshev.com") `
 -bcc @("hristo@deshev.com", "test@deshev.com") `
 -subject 'hi everyone'-body 'test'

■Caution Blind copies are not actually blind. Normally, a mail recipient should have no way of telling if that
message has been blind carbon copied to another person. System.Net.Mail, unfortunately, has a bug that
will allow a recipient to do that. Messages will carry an X-Receiver header that will list all recipients, and that
header will be visible to everyone on the To, CC, and BCC lists. Mail clients do not typically display those headers
and make them visible right away, but anyone who bothers to view the message headers will get the full
recipient list.

We can provide a recipient’s e-mail address that contains a friendly name besides the
actual address by using a MailAddress object and pass that to our script as the $to, $cc, or $bcc
parameter. PowerShell’s dynamic nature will accept that object, and our script will still work.
Going through New-Object and creating a new MailAddress with code like this

$addr = New-Object System.Net.Mail.MailAddress `
 -arg @("test@deshev.com", "Test User3")

Deshev_940-3C18.fm Page 353 Thursday, January 17, 2008 3:28 PM

354 CH AP T E R 1 8 ■ S E N D IN G E - M A IL

can be quite tedious. Fortunately, we can provide a properly formatted address string like
“Mike Smith | ACME Corp <msmith@acme.com>”, and System.Net.Mail will deal with it properly.
Our script needs no changes to support that:

.\send-mail-multiple-recipients.ps1 -to "Test User2 <test@deshev.com>" `
 -subject 'friendly name'-body 'test'

E-mail clients will display the message using both the friendly name and the actual address.
Figure 18-1 shows how our message looks in Windows Mail, the mail client bundled with
Windows Vista.

Figure 18-1. Windows Mail showing our recipient’s display name, Test User2

Figure 18-2 shows how the same message looks in Outlook 2007.

Figure 18-2. Outlook 2007 showing our recipient’s display name, Test User2

Deshev_940-3C18.fm Page 354 Thursday, January 17, 2008 3:28 PM

C HA P TE R 1 8 ■ SE N DI N G E -M A I L 355

Working with Message Headers
Frequently, we need to set our message with additional headers that will signal the priority,
Reply-To address, and many other things that we, our mail client, or our mail server can recog-
nize, such as a request for sending back a message read notification. The message priority and
Reply-To address are conveniently exposed as properties of the MailMessage class:

$message.Priority = [System.Net.Mail.MailPriority] "High"
$message.ReplyTo = test2@deshev.com

To accommodate setting those properties in our script, we need to add two more parame-
ters: $priority and $replyTo. They default to $null and an empty string respectively, and we
need to add some checks to skip configuring them if the parameters have not been provided.
Here is how to do it:

if ($priority -ne $null)
{
 $message.Priority = [System.Net.Mail.MailPriority] $priority
}

if ($replyTo -ne "")
{
 $message.ReplyTo = $replyTo
}

Figure 18-3 displays the result: a high-priority message that needs action right away!

Figure 18-3. Windows Mail displaying a high-priority message

Requesting a message read receipt is not supported with a property, so we need to add a
custom header for that. The header name is Disposition-Notification-To, and the header text
should contain the e-mail address that should be notified, usually the sender address. To make
our script generic enough, we add a solution that will set any header we like. We pull all header-
related operations in a Set-Headers function that knows how to set the message priority, the
Reply-To address, and any additional headers. The extra headers are passed in the $extraHeaders

Deshev_940-3C18.fm Page 355 Thursday, January 17, 2008 3:28 PM

356 CH AP T E R 1 8 ■ S E N D IN G E - M A IL

parameter as a collection of objects with HeaderName and HeaderText properties. Again, we use
foreach to set all headers. Here is the final Set-Headers function:

function Set-Headers($message, $priority, $replyTo, $extraHeaders)
{
 if ($priority -ne $null)
 {
 $message.Priority = [System.Net.Mail.MailPriority] $priority
 }

 if ($replyTo -ne "")
 {
 $message.ReplyTo = $replyTo
 }

 $extraHeaders | foreach {
 $message.Headers.Add($_.HeaderName, $_.HeaderText) }
}

We place the Set-Headers function in an updated version of our mailutils library script,
mailutils-headers.ps1.

We have to update our driver and save it under a new name, send-mail-headers.ps1. It
now has to declare the new $priority, $replyTo, and $extraHeaders parameters and pass them
to Set-Headers:

param($to = $(throw "'to' cannot be null"),
 $cc = @(),
 $bcc = @(),
 [string] $subject = "(no subject)",
 [string] $body = "",
 $priority = $null,
 [string]$replyTo = "",
 $extraHeaders = @())

. .\mailutils-headers.ps1

$message = Create-Message $to $cc $bcc $subject $body
Set-Headers $message $priority $replyTo $extraHeaders
Send-Message $message

Now, we can send a message that requests a read receipt from its recipients:

.\send-mail-headers.ps1 -to "Test User2 <test@deshev.com>" `
 -subject 'important event'-body 'Event info...' -extraHeaders `
 @(@{HeaderName="Disposition-Notification-To"; `
 HeaderText="test@deshev.com"})

When the recipient opens the message, he or she will be asked to send back a notification
response. Figure 18-4 presents the Windows Mail prompt for sending a receipt.

Deshev_940-3C18.fm Page 356 Thursday, January 17, 2008 3:28 PM

C HA P TE R 1 8 ■ SE N DI N G E -M A I L 357

Figure 18-4. The Windows Mail prompt for sending a read receipt

We should not rely on receipts too much, because recipients can always choose not to
notify us or just configure their e-mail clients to silently ignore read receipts.

The $extraHeaders parameter now allows us to pass any header we wish and tailor the
message according to our environment. If users are accustomed to filtering messages according to
a some header, say Custom-Header, we can send properly formatted messages that get processed by
the correct filter with a command like this:

.\send-mail-headers.ps1 -to "Test User2 <test@deshev.com>" `
 -subject 'important event'-body 'Event info...' -extraHeaders `
 @(@{HeaderName="Disposition-Notification-To"; `
 HeaderText="test@deshev.com"},
 @{HeaderName="Custom-Header"; HeaderText="PowerShell test mail"})

Mail clients tend to hide most of the headers, as they do not contain information of the
utmost importance. Windows Mail lists all headers in the Details tab of the Message Properties
dialog. Outlook 2007 displays the message headers in the Internet Headers box that is a part of
the Message Options dialog.

Multipart Messages
The world of e-mail has more than just plain text. The Multipurpose Internet Mail Extensions
(MIME) standard allows us to create messages composed of cleanly separated parts. We can
provide content in different formats, attach files, and embed media like images. Using the MIME
standard, we can create and send rich messages that can cater to any demanding user needs.

Message Views
System administrators and software developers sometimes connect and read mail through a
limited client or connection. It is always a good idea to send a message in plain text, so that it is
readable even if you are using a console application or browsing through raw message dumps.
On the other hand, we often need rich formatting that can highlight important portions of the
message body or serve some other purpose. To balance those seemingly conflicting needs, we
can use the System.Net.Mail abstraction of a message AlternateView and provide different
views of the same message. Mail clients can determine which view to display to the user, and if
we always provide a plain text view, we are guaranteed that the message will contain readable
text even if in a raw text dump.

Deshev_940-3C18.fm Page 357 Thursday, January 17, 2008 3:28 PM

358 CH AP T E R 1 8 ■ S E N D IN G E - M A IL

The most common use of alternate views is to provide a plain text alternative to a message
that contains HTML. To implement that in our script, we need two body inputs for the two
views: $body and $htmlBody. We will default to a plain text message if the user provides only
$body, and we will error out if we get only $htmlBody, as we always want to have a text view. It is
about time that we pull the message body configuration out of Create-Message and create a
separate function, Set-MessageBody:

function Set-MessageBody($message, [string] $body, [string]$htmlBody)
{
 if ($body -ne "" -and $htmlBody -ne "")
 {
 Set-MultiPartBodies $message $body $htmlBody
 }
 elseif ($body -ne "")
 {
 $message.IsBodyHtml = $false
 $message.Body = $body
 }
 elseif ($htmlBody -ne "")
 {
 $message.IsBodyHtml = $true
 $message.Body = $htmlBody
 }
 else
 {
 throw "Cannot send a message with an empty body!"
 }
}

The real action happens inside Set-MultiPartBodies. That function creates the AlternateView
objects. Each alternate view requires a body and content type. Mail readers will display only
views of supported content types, so it is a good idea to get to know what programs your users
are using. Anyway, always including a plain text view is the safest bet. Here is the code:

function Set-MultiPartBodies($message, $body, $htmlBody)
{
 $textView = [System.Net.Mail.AlternateView]::`
 CreateAlternateViewFromString($body, "text/plain")
 $message.AlternateViews.Add($textView)

 $htmlView = [System.Net.Mail.AlternateView]::`
 CreateAlternateViewFromString($htmlBody, "text/html")
 $message.AlternateViews.Add($htmlView)
}

Deshev_940-3C18.fm Page 358 Thursday, January 17, 2008 3:28 PM

C HA P TE R 1 8 ■ SE N DI N G E -M A I L 359

Those two functions go to a new version of our mailutils library. We will call it
mailutils-multipart.ps1, and we will update our driver script, naming it
send-mail-multipart.ps1:

param($to = $(throw "'to' cannot be null"),
 $cc = @(),
 $bcc = @(),
 [string] $subject = "(no subject)",
 [string] $body = "",
 [string] $htmlBody = "")

. .\mailutils-multipart.ps1

$message = Create-Message $to $cc $bcc $subject
Set-MessageBody $message $body $htmlBody
Send-Message $message

Now, we can send properly formatted messages like this:

.\send-mail-multipart.ps1 -to test@deshev.com -subject "multipart message" `
 -body "Very important!" `
 -htmlBody "<u>very</u> important"

Rich mail clients will display the HTML part only. Figure 18-5 shows how our message
looks in Windows Mail.

Figure 18-5. Windows Mail displaying an HTML-formatted message

Attaching Files to Messages
System automation involves dealing with lots of data, and some of that data, sooner or later,
will have to be sent over e-mail. The data can vary wildly: a log file from a failed product build,
a screenshot of a malfunctioning program, or an exported PDF of a sales report. Luckily, System.
Net.Mail’s MIME support hides all data encoding from us and makes attaching files to a

Deshev_940-3C18.fm Page 359 Thursday, January 17, 2008 3:28 PM

360 CH AP T E R 1 8 ■ S E N D IN G E - M A IL

message a breeze. All we have to do is create MailAttachment objects and add them to the
message’s Attachments collection.

Again, we are following the philosophy of adding the file attachment feature to our script
in a manner that is least disruptive to the code written so far. We will add a new optional
parameter, $attachments, that will contain a collection of file paths. The default is an empty
collection. We put all attachment-processing logic in a separate function, Set-Attachments,
that will loop over the file paths and add them to the message.

function Set-Attachments($message, $attachedFiles)
{
 foreach ($file in $attachedFiles)
 {
 $attachment = New-Object System.Net.Mail.Attachment -argumentList $file
 $message.Attachments.Add($attachment)
 }
}

We add that function to the mailutils library and name this version
mailutils-attachment.ps1. Our updated driver script, send-mail-attachment.ps1, needs a
one-line change—we need to call Set-Attachments before sending the message:

param($to = $(throw "'to' cannot be null"),
 $cc = @(),
 $bcc = @(),
 [string] $subject = "(no subject)",
 [string] $body = "",
 [string] $htmlBody = "",
 $attachments = @())

. .\mailutils-attachment.ps1

$message = Create-Message $to $cc $bcc $subject
Set-MessageBody $message $body $htmlBody
Set-Attachments $message $attachments
Send-Message $message

That is all! We call the script by passing a new array of paths:

.\send-mail-attachment.ps1 -to "test@deshev.com" -subject "Program error" `
 -body "Program error log and details" `
 -attachments @("C:\PowerShell\kill.log", "C:\PowerShell\test.txt")

Figure 18-6 shows a message with attachments generated by our script

Deshev_940-3C18.fm Page 360 Thursday, January 17, 2008 3:28 PM

C HA P TE R 1 8 ■ SE N DI N G E -M A I L 361

Figure 18-6. Windows Mail showing our message attachments

Embedding Media in Messages
HTML allows us to embed various resources in our document, with the most commonly used
ones being images. A normal web page would include code like <img src="http://test.com/
logo.png" /> to make the browser load the image and display it inside the document. We can
not use this approach in HTML code included in an e-mail message. Theoretically, we can
request an image from a remote server, but in practice, most mail readers block such requests
because of privacy concerns—most people do not want to initiate random connections to servers
on the Web when they read a message. We can embed the image in the message, MIME-encode
it similar to an attachment, and give it a content ID. Having a content ID, such as image1, will
allow us to reference that image with a URL of the type cid:image1.

We embed files in messages by wrapping them in LinkedResource objects and adding
those to the mail message. To create a LinkedResource object, we need to provide a file path
and a ContentId setting. Note that using LinkedResource objects requires that we set up alter-
nate views of our message, so we will have to pass both the $body and $htmlBody parameters.
We can reference linked resources only from the HTML view.

We will add this feature to our script by creating a new function, Set-LinkedResources. It
needs a collection of objects in which each has a File and ContentId property. The script takes
a new optional parameter, $linkedResources, that defaults to an empty collection. Our function
code follows; we first confirm that we have an HTML alternate view and provide a descriptive
error message if we do not:

function Set-LinkedResources($message, $linkedResources)
{
 $htmlView = $message.AlternateViews | where {$_.ContentType -like 'text/html*'}
 if ($htmlView -eq $null)
 {
 throw "You need an HTML alternate view to use linked resources!"
 }

Deshev_940-3C18.fm Page 361 Thursday, January 17, 2008 3:28 PM

362 CH AP T E R 1 8 ■ S E N D IN G E - M A IL

 foreach ($resourceInfo in $linkedResources)
 {
 $resource = New-Object System.Net.Mail.LinkedResource `
 -argumentList $resourceInfo.File
 $resource.ContentId = $resourceInfo.ContentId

 $htmlView.LinkedResources.Add($resource)
 }
}

The Set-LinkedResources function goes to a new version of the mailutils library:
mailutils-linkedresources.ps1. For the new driver script, send-mail-linkedresources.ps1,
we just need to add a call to Set-LinkedResources and the $linkedResources parameter
declaration:

param($to = $(throw "'to' cannot be null"),
 $cc = @(),
 $bcc = @(),
 [string] $subject = "(no subject)",
 [string] $body = "",
 [string] $htmlBody = "",
 $attachments = @(),
 $linkedResources = @())

. .\mailutils-linkedresources.ps1

$message = Create-Message $to $cc $bcc $subject
Set-MessageBody $message $body $htmlBody
Set-Attachments $message $attachments
Set-LinkedResources $message $linkedResources
Send-Message $message

We call the script by providing a collection of linked resource information objects that are
really plain associative arrays:

.\send-mail-linkedresources.ps1 -to test@deshev.com -subject 'inline image' `
 -body 'test' -htmlBody `
 '<p>Here is a sample chart:</p>' `
 -linkedResources (@{File="C:\PowerShell\chart.png"; ContentId="chart"})

Note how we use the snippet in our HTML code to refer to the
chart image. Figure 18-7 shows how our embedded chart looks in Windows Mail.

Deshev_940-3C18.fm Page 362 Thursday, January 17, 2008 3:28 PM

C HA P TE R 1 8 ■ SE N DI N G E -M A I L 363

Figure 18-7. Windows Mail displaying an HTML-formatted message with an embedded image

Putting It All Together
We have gone through quite a lot! Our simple e-mail script grew into something quite sophis-
ticated. The final script can now do the following:

• Send both plain text and HTML e-mail.

• Handle multiple recipients.

• Support carbon copying and blind carbon copying.

• Set message priority and Reply-To address.

• Add custom headers and support message read receipts.

• Attach files to the message.

• Embed media files in HTML-formatted messages.

The beauty of it all is that our script library, mailutils-final.ps1, contains less than 100 lines
of script. The driver script, send-mail-final.ps1, is about 20 lines long and just calls functions
from the script library. We got every feature from the preceding list for a mere 120 lines of code—
talk about PowerShell’s language power and expressiveness!

All features are optional, and the only mandatory parameters are $to and $body. If we try
to push our script’s limits and use everything, the command might look similar to this:

Deshev_940-3C18.fm Page 363 Thursday, January 17, 2008 3:28 PM

364 CH AP T E R 1 8 ■ S E N D IN G E - M A IL

.\send-mail-final.ps1 -subject 'Everything and the kitchen sink' `
 -to "Test User <test@deshev.com>" `
 -cc "Hristo Deshev <hristo@deshev.com>" `
 -bcc "Test User2 <test2@deshev.com>" `
 -body "Here is a sample chart" `
 -htmlBody "<p>Here is a sample chart:</p>" `
 -attachments @("C:\PowerShell\kill.log", "C:\PowerShell\test.txt") `
 -linkedResources (@{File="C:\PowerShell\chart.png"; ContentId="chart"})`
 -priority "High" `
 -replyTo "test2@deshev.com" `
 -extraHeaders @(@{HeaderName="Disposition-Notification-To"; `
 HeaderText="test@deshev.com"})

Not impressed yet? Just look at the monster message in Figure 18-8.

Figure 18-8. A high-priority, HTML-formatted message sent to multiple recipients, containing an
embedded image, two attachments, and several custom headers

I hope neither I nor you are on the sending or receiving end of such messages! Anyway,
should we want or need to, creating such a message is most certainly possible.

Deshev_940-3C18.fm Page 364 Thursday, January 17, 2008 3:28 PM

C HA P TE R 1 8 ■ SE N DI N G E -M A I L 365

Summary
This chapter involved some serious programming using objects from the System.Net.Mail
namespace in the .NET Framework. We started with simple text-based messages and went on
adding support for often-used mail features like richly formatted text and attachments. Even if
you are not a programmer, you can follow what the code does and get the general idea. If you
do not want to get that deep, using the scripts we created does not require understanding of its
inner workings. Just copy send-mail-final.ps1 and mailutils-final.ps1 to a convenient loca-
tion, and you can use them to send e-mail on any system that has PowerShell installed. To get
deeper into System.Net.Mail and cover advanced mail-sending scenarios, you should continue
your journey with the MSDN documentation on the .NET System.Net.Mail classes.

Deshev_940-3C18.fm Page 365 Thursday, January 17, 2008 3:28 PM

367

■ ■ ■

C H A P T E R 1 9

Talking to COM Objects

The Component Object Model, COM for short, is a widely used platform that allows different
pieces of software to interoperate without needing to know what language or programming
environment has been used for implementing any of them. It has been the de facto standard
for application interoperability for quite some time. The technology was invented in 1993 and
started gaining popularity in 1997. Today, it is practically everywhere. COM is so popular because
it makes exposing automation interfaces or extensibility points very easy. Some programs, such
as Microsoft Office, use it to expose object models that can be exploited by script authors. Other
programs, such as Internet Explorer and Windows Media Player, expose pieces of user interface
along those object models, so those can be embedded into other programs and even web pages.
COM has been extended with the DCOM system to provide distributed communication and allow
objects to be deployed to remote machines. DCOM eliminates the need to know if an object runs
on the same machine or not and makes it very easy to build distributed systems. For example, the
WMI infrastructure that we will be discussing in the next chapter uses DCOM as its intermachine
communication medium.

With the advent of the .NET Framework, Microsoft has been pushing other ways of object
interoperability. The .NET Framework specifies a common type system, and that allows compo-
nents to be written in different languages, and they can work with each other as if they were
implemented in the same language. The .NET Remoting infrastructure provides distributed
communications infrastructure that even supports more sophisticated life cycle management
and object marshalling strategies than COM itself. With the release of .NET 3.0, we have yet
another way for objects to communicate across process and computer boundaries—the Windows
Communications Foundation. COM has traditionally been a complex system, and software
developers have been reluctant to use it because of all the intricacies involved. The .NET-based
component technologies are expected to replace COM, and many people have been proclaiming
that COM is dead. That is really not so. Microsoft continues, and will continue, to support COM
in the current and future versions of the Windows operating system. There is simply too much
software out there that relies on COM for its automation and interoperability interfaces. The
good news for us is that it is very easy to use COM objects from within scripting environments,
and PowerShell provides excellent support for that. We do not need to deal with all the complex-
ities involved in exposing functionality as COM objects, and we can use PowerShell to take
advantage of other COM objects.

In this chapter, we will be scripting the Windows Shell and other components like the
Microsoft Office tools, such as Word or Excel, and the Internet Explorer browser. I will also
demonstrate how to reuse code written in other scripting languages such as VBScript or
JScript, as those are based on the Windows Scripting Host technology that in turn is based
on COM.

Deshev_940-3C19.fm Page 367 Thursday, January 17, 2008 3:30 PM

368 CH AP T E R 1 9 ■ T AL K IN G TO C OM OB J E CT S

How COM Works
Everything about COM revolves around object interfaces. The component platform is intrinsi-
cally object oriented. It defines interfaces as contracts, sets of methods and properties, that
objects must implement. Using contracts makes it possible for other objects to use the inter-
faces by knowing what operations are supported. A COM interface is a set of methods and
properties that an object exposes to the outside world. It is identified by a globally unique iden-
tifier (GUID). Classes that implement those interfaces are also uniquely identified by a GUID;
that GUID is also called a class ID, or a CLSID. Those classes are registered in the Windows
registry, and the class IDs are the ones that the system uses when creating an object. A GUID is
really a long number and is a bit hard to remember; for example, the GUID for the Internet
Explorer Application object looks like this: {D30C1661-CDAF-11D0-8A3E-00C04FC9E26E}. That is
why the COM creators have come up with a better way to identify an object—the program ID
string, or ProgID. The ProgID is a friendly string that looks more like a class name. For example,
the preceding CLSID corresponds to the InternetExplorer.Application ProgID.

Whenever a program wants to use a COM object, it issues a call to Windows by providing
the object CLSID or ProgID. Windows locates the object and its hosting application by looking
in the registry. It creates the object and asks it if it supports the interface we need right now. If
it does, we are given an object reference that points to the interface implementation. We can
then use that reference just like we would use a normal object. The object creation mechanism
is language, process, and technology agnostic. Objects can be created in any language; they
can be hosted in many runtime environments, and they do not even need to operate on the
same machine. COM will know how to set up proxy objects that look just like the real object
and then will marshal parameters and results back and forth, so that we do not have to care if
the object really runs in our process or on a machine somewhere on the network.

How PowerShell Supports COM
PowerShell is built on the .NET Framework, and the framework already provides excellent COM
support. For example, we can use the .NET infrastructure to get a hold of a .NET type that wraps a
COM object and use the Activator class to create an instance of that type. This is how we can
create an instance of the Internet Explorer browser using that approach:

PS> $ieType = [type]::GetTypeFromProgID("InternetExplorer.Application")
PS> $ieType.Name
__ComObject
PS> $ie = [Activator]::CreateInstance($ieType)
PS> $ie.Name
Windows Internet Explorer
PS>

There are two things to note in the preceding example. First, the type we get back from the
GetTypeFromProgID() method has the odd name of __ComObject. All COM object wrappers are
of that type. Second, we create the actual object by passing that type to the CreateInstance()
method on the Activator class; this is just what we would do if we wanted to instantiate any
.NET class. As you can see from the value of the Name property, the object we got back is an
instance of the Internet Explorer browser. We will use that object to do some real-life work later
in this chapter.

Deshev_940-3C19.fm Page 368 Thursday, January 17, 2008 3:30 PM

C H AP TE R 1 9 ■ TA L K I N G T O CO M O B J E C TS 369

The preceding solution is not very good looking, is it? Two lines of code are way too many
to create an object. We mentioned that we are using the Activator object just like we would use
it for creating a .NET object. Does that mean that we can use PowerShell’s standard approach
for creating .NET objects, the New-Object cmdlet? The answer is both yes and no. The New-Object
cmdlet can create COM objects by using their ProgID’s, but it needs to be told explicitly that
it has to create a COM object instead of a .NET one. To do that, we provide the ProgID as the
ComObject parameter value. Here is how we can rework the preceding sample and make it use
New-Object:

PS> $ie = New-Object -ComObject InternetExplorer.Application
PS> $ie.Name
Windows Internet Explorer

Now, that is way better! Besides being shorter and more readable, the code does absolutely
the same thing as the previous example.

The PowerShell type system provides a built-in adapter for COM objects that knows how
to query COM type information. It gets details about objects from the COM type libraries and
makes all objects look as close to native .NET objects as possible. It really does a good job at that.

UNSUPPORTED: MONIKERS, RUNNING OBJECTS, AND EVENTS

Creating and accessing objects is not the entire story when working with COM. COM objects can be uniquely
identified by a name or a path, similar to a URL, that is called a moniker. You can use such monikers, for example,
to get a reference to an Excel worksheet or the second paragraph in a Word document. Another useful COM
feature is the running objects table, a central place where objects get registered that provides us with a means
to get the object. For example, the Microsoft Word application instance gets registered in that table when Word
is started, thus the application object is made available to third-party code. Just like .NET objects, COM objects
can expose events to their clients and raise them when some condition occurs.

All of those features are not available to PowerShell. They are relatively rarely used, and the shell designers
have decided not to implement them for the first version. For now, the only level of support that we get is the
New-Object cmdlet. Mind you, that is not bad at all—in this chapter, we will use it to accomplish lots of
useful things.

Scripting Programs Through Their COM Interfaces
The primary use of COM that we will look at in this chapter is the ability to use it to automate
other programs. COM has long been software developers’ tool of choice to provide automation
interfaces to advanced users, administrators, and other programs. A software product will typically
expose its application services as COM objects that can be used from any language. The best
example of that are the Microsoft Office tools; all programs in the suite expose their application
objects, their documents, and other services as COM objects. We can use those objects to create
and manipulate documents and all sorts of data objects.

Automating Microsoft Word
We will be using the application as the entry object when working with Microsoft Word. It is
identified by the Word.Application ProgID. The core operations that a Microsoft Word application

Deshev_940-3C19.fm Page 369 Thursday, January 17, 2008 3:30 PM

370 CH AP T E R 1 9 ■ T AL K IN G TO C OM OB J E CT S

exposes via its automation interface involve working with documents and text. We can open
a document file, read or modify the text inside it, and then save our changes. The objects that
we will be working with most of the time are Range objects. They represent a subset of the text
that can be modified as a single unit; we can append or remove text, set a different font, switch
to another text or background color, and so on. We can create or obtain text range objects from
properties exposed by the Document object; we can get them from the currently selected text; or
we can create them ourselves. No matter how we got our hands on a text range object, we can
manipulate it in the same way.

In this chapter, we will be using Microsoft Word 2007. Do not worry too much if you have
an older version of the program. Microsoft is famous for keeping its public objects as backwardly
compatible as possible, and there is very little difference in the available methods and proper-
ties between objects exposed by Word 2007 and Word 2003, for example. The sample code will
run against Word 2003 with little or no modification.

Opening Documents and Extracting Text

Let’s start with the simplest Word-related task that we may have to do—reading text from a
document file. A lot of tasks in a typical enterprise environment involve generating documents,
sending them to other people for approval, and storing them in a central location. Being able
to retrieve text from many documents is an important ability; once we can do that, we can
build small scripts that can search for keywords, extract related information from many docu-
ments, build a report, merge documents, and much more.

As an example, let’s have a simple document called SampleReport.docx, which contains
two paragraphs, each having two sentences. Figure 19-1 shows how the document looks when
we open it in Microsoft Word.

To get to the text in that document, we need to obtain an instance of the Word.Application
object. It will allow us to open the document and get a reference to the document object. Once
we do that, we can get the entire text using the Document’s Content property, which will return a
Range object that we can use to extract the text. We will save the code in a script file called
Get-DocumentText.ps1. Here is the code:

$wordApp = New-Object -COM Word.Application
$file = (dir SampleReport.docx).FullName

$doc = $wordApp.Documents.Open($file)
$text = $doc.Content.Text
$text

$wordApp.Quit()

Just as you would expect, we get the text of the document from the Range object’s Text
property. Another thing to note is that we need to pass an absolute path to the document file.

■Caution The Documents collection Open method needs a full path; a relative one will not work, as
Microsoft Word will use a different folder as the current folder instead of the one you are actually in. Most
likely, that will be C:\Windows\System32, and we definitely do not want to store our documents in there.

Deshev_940-3C19.fm Page 370 Thursday, January 17, 2008 3:30 PM

C H AP TE R 1 9 ■ TA L K I N G T O CO M O B J E C TS 371

Figure 19-1. Microsoft Word showing the sample report document

■Note The last line in the Get-DocumentText.ps1 script is very important! We need to clean up and exit
the application once we are done with it. Failing to do so will leave us with a hung WINWORD.EXE process that
does nothing but take up memory. Even worse, failing to exit may keep a reference to an open document and
that may lock the file, thus preventing people from using it.

Here is what happens when we run our script:

PS> .\Get-DocumentText.ps1

This is a sample report. Do not use it for real work.This is paragraph 2. Sampl
e text follows.

We get the text all squashed inside one line; this is a side effect of transforming the rich
formatted text to a plain string. If we need the text split into paragraphs, we can use the Document
Paragraphs collection; it will return a number of Paragraph objects, each representing a para-
graph in the document. Each of those objects contains a Range that we can use to get to the
actual text. Let’s now create a new script, Get-DocumentParagraphs.ps1, that gets all paragraphs
in our document. Here is the code:

$wordApp = New-Object -COM Word.Application
$file = (dir SampleReport.docx).FullName

$doc = $wordApp.Documents.Open($file)

Deshev_940-3C19.fm Page 371 Thursday, January 17, 2008 3:30 PM

372 CH AP T E R 1 9 ■ T AL K IN G TO C OM OB J E CT S

$paragraphs = [object[]] $doc.Paragraphs
foreach ($paragraph in $paragraphs)
{
 Write-Host "PARAGRAPH:"
 Write-Host $paragraph.Range.Text
}

$wordApp.Quit()

The preceding code is pretty straightforward. There is only one minor quirk—the [object[]]
cast that converts the Paragraphs collection object to a PowerShell collection. We need that so
that we can iterate the collection using the foreach statement or access items inside by index.
Here is what we get after running the script:

PS> .\Get-DocumentParagraphs.ps1
PARAGRAPH:
This is a sample report. Do not use it for real work.
PARAGRAPH:
This is paragraph 2. Sample text follows.

We can navigate the document in smaller chunks; the Document object exposes a Sentences
collection that allows us to get ranges pointing to sentence objects recognized by the applica-
tion. We can use that to create another script, Get-DocumentSentences.ps1, which will get all
sentences’ text. Here is the code:

$wordApp = New-Object -COM Word.Application
$file = (dir SampleReport.docx).FullName

$doc = $wordApp.Documents.Open($file)

$sentences = [object[]] $doc.Sentences
foreach ($sentence in $sentences)
{
 Write-Host "Sentence:"
 Write-Host $sentence.Text
}

$wordApp.Quit()

The code looks pretty similar to the example that iterates over paragraphs. The only differ-
ence is that the Sentences collection contains raw Range objects. Unlike paragraphs, Word does
not use a separate object to represent sentences—do not start looking for that Sentence object.
Here is what we get once we run the script:

PS> .\Get-DocumentSentences.ps1
Sentence:
This is a sample report.
Sentence:
Do not use it for real work.
Sentence:

Deshev_940-3C19.fm Page 372 Thursday, January 17, 2008 3:30 PM

C H AP TE R 1 9 ■ TA L K I N G T O CO M O B J E C TS 373

This is paragraph 2.
Sentence:
Sample text follows.

The smallest unit of text that we can get is the word. We can do that from the Words collec-
tion. We can get all words in another script, Get-DocumentWords.ps1:

$wordApp = New-Object -COM Word.Application
$file = (dir SampleReport.docx).FullName

$doc = $wordApp.Documents.Open($file)

$words = [object[]] $doc.Words
$words | select Text

$wordApp.Quit()

Just like with sentences, the Words collection returns a collection of Range objects. The
preceding script returns a collection containing the ranges’ Text property values. Here is the
output that we get after running it:

PS> .\Get-DocumentWords.ps1
Text

This
is
a
sample
report
.
Do
not
...

Creating and Modifying Documents

The text range objects that we have been using so far are very powerful. We have been using
them to get a read-only view of the document, but now we are going to change that. Ranges can
have their text modified; their text can be reformatted independently; and much more. And we
can use them to add content to our document. The simplest useful scenario that comes to mind
is saving a snippet of text to a Word document. You may already be guessing at the approach:
get the Document.Content range, and set its Text property. That is basically the idea. The only
additional tasks are to create a new document and save it as a file once we are done modifying
the text. We will create a new script, New-Document.ps1, that will accept two parameters: the
path to the new document and the text that will be saved inside. Here is the code:

param ($path, $text)

$wordApp = New-Object -COM Word.Application

Deshev_940-3C19.fm Page 373 Thursday, January 17, 2008 3:30 PM

374 CH AP T E R 1 9 ■ T AL K IN G TO C OM OB J E CT S

#delete the file if it already exists
if (Test-Path $path)
{
 del $path
}

$doc = $wordApp.Documents.Add()
$doc.Content.Text = $text
$doc.SaveAs([ref] $path)

$wordApp.Quit()

The code calls the Documents.Add() method to tell Word to create a new document object.
Once it sets the text to the Content range, it saves the document to disk by calling the SaveAs()
method. The SaveAs() method has one small peculiarity we need to take into account—it needs to
have the string variable that holds the path to the file as a reference. That is why we need the
[ref] cast. Here is how we call the script:

PS> $newDoc = Join-Path (Get-Location) Test.docx
PS> .\New-Document.ps1 $newDoc "Hello Microsoft Word!"
PS>

We get no text output back, and we need to open the Test.docx file to see the final result.
Figure 19-2 shows how the file looks.

Figure 19-2. Microsoft Word showing the Test.docx generated document

Deshev_940-3C19.fm Page 374 Thursday, January 17, 2008 3:30 PM

C H AP TE R 1 9 ■ TA L K I N G T O CO M O B J E C TS 375

Apart from creating new documents, we can modify existing ones by opening them first.
All we need to do is use the code we saw in the text retrieval examples. After we open the docu-
ment, we can locate the part we need (a Range object, of course), modify it, and then save the
document to disk. To show that we can modify not only the text content but formatting too, we
will create a script that opens a document, appends some text at the beginning, and colors it in red.
We will call the script Insert-RedText.ps1. It will modify a copy of our original SampleReport.docx
file that we will name SampleReportRed.docx. Here is the code:

$wordApp = New-Object -COM Word.Application
$file = (dir SampleReportRed.docx).FullName

$doc = $wordApp.Documents.Open($file)

$documentFront = $doc.Content
$documentFront.End = $start.Start

$documentFront.Text = "IMPORTANT!!! Please review!`n"
$documentFront.Font.Name = "Comic Sans MS"
$documentFront.Font.ColorIndex = 6

$doc.Save()
$wordApp.Quit()

The insertion technique needs some explaining. Initially, we get a range that represents
the entire document contents. We then collapse the range by setting its End property to the
value that the Start one contains. This effectively creates a zero-length range that is positioned
at the beginning of the document. We can use it as an insertion point; setting its Text property
will insert text at the top of the document. We add the “IMPORTANT!!! Please review!” text followed
by a new line symbol. We then use the range object to change the text font to what is probably
the most annoying font in the universe: Comic Sans MS. We also change the text color to dark
red; that is what the 6 color index stands for. Finally, we call the Save() method, so that our
changes are persisted. Running our script does not generate much text output:

PS> .\Insert-RedText.ps1
PS>

To see the result of our work, we must open the SampleReportRed.docx file. Figure 19-3
shows the document as displayed by Microsoft Word.

Deshev_940-3C19.fm Page 375 Thursday, January 17, 2008 3:30 PM

376 CH AP T E R 1 9 ■ T AL K IN G TO C OM OB J E CT S

Figure 19-3. Microsoft Word showing the text we inserted at the beginning of the document

DISPLAYING THE WORD WINDOW FOR DEBUGGING PURPOSES

Automating Microsoft Word from a script does not display the application window—that is the entire point. The
user should not see any windows, and the task at hand should be performed in the background. While that is
the desired behavior at the end of the day, being unable to view the application window may sometimes get in the
way. Imagine debugging a tough problem in your code and having to switch to a folder window and open the
file your script just modified just to find out if the script worked correctly. To deal with that problem more effi-
ciently, you can instruct Word to display its application window. This way, you get the best of both worlds—
the script code continues to run and modify the document, and you see the end results.

To force the main application window to become visible at runtime, you need to just set the Application
object’s Visible property to $true. Using the variable name from the scripts in this section, you can insert
the following code anywhere in your script:

$wordApp.Visible = $true

Make sure you get rid of that code once you are done and your script works perfectly!

Using Microsoft Word’s Spell Checker

Word is really a wonderful program. It contains features, such as a powerful spell-checker, that
people cannot live without. The greatest part about the spell-checker is that it is available through
the COM automation interface. We do not have to do anything special to use it—all we have to

Deshev_940-3C19.fm Page 376 Thursday, January 17, 2008 3:30 PM

C H AP TE R 1 9 ■ TA L K I N G T O CO M O B J E C TS 377

do is add some text and get the Document SpellingErrors property value. The property will contain
a collection of Range objects that contain the erroneous text portions. Once we have a range that
contains an incorrect word, we can get helpful suggestions for correction by calling the Range object
GetSpellingSuggestions() method. That method will return a collection of SpellingSuggestion
objects whose Name property values contain the text of the suggested correction.

Armed with the theory I outlined previously, we can create a script that passes a chunk of
text to Microsoft Word and reports on any spelling errors that it finds. We will call the script
SpellCheck-Text.ps1. Here is its code:

$wordApp = New-Object -COM Word.Application
$doc = $wordApp.Documents.Add()
$doc.Content.Text = "this is some mistakn text"

$errors = [object[]] $doc.SpellingErrors

foreach ($errorRange in $errors)
{
 Write-Host "Error: $($errorRange.Text)"
 $suggestions = ([object[]]$errorRange.GetSpellingSuggestions())
 $suggestedWords = $suggestions | foreach { $_.Name }
 Write-Host "Suggestions :"
 Write-Host $suggestedWords
}

$wordApp.Quit()

Again, we use a cast for the COM collection that the SpellingErrors property returns
to a PowerShell object array, so that we can iterate over it with a foreach loop. We get the
SpellingSuggestion objects for each error range object and turn them to an array using the
same cast technique. We then pipe the collection through the foreach cmdlet, which will
return a collection that contains only the Name property values. Here is the result we get after
running the script:

PS> .\SpellCheck-Text.ps1
Error: mistakn
Suggestions :
mistaken mistake mistaking
PS>

Getting Help and Going Further

The examples we went through barely scratched the surface of automating Microsoft Word.
Entire books have been written on this topic. Experienced scripters or people with background
in Microsoft Office automation will recognize the objects we have been using in our scripts,
because those are the very same objects that we manipulate from the Visual Basic for Applications
(VBA) environment that is built in all Microsoft Office applications. The VBA programming

Deshev_940-3C19.fm Page 377 Thursday, January 17, 2008 3:30 PM

378 CH AP T E R 1 9 ■ T AL K IN G TO C OM OB J E CT S

language is different than PowerShell, but it is not that different. Most of the time, translating
a code snippet from VBA to PowerShell is pretty straightforward, as all the method invocations
and property access syntax is similar. The only thing that can bite you is accessing collections,
and you already know how to work around that by using a cast to convert them to PowerShell
collections. Armed with that knowledge, you can use the “Microsoft Word Visual Basic Reference”
section in Microsoft Word’s help to get information about automation object and to find useful
code snippets.

Another strong ally in Microsoft Office automation is making Word generate your code.
Whenever you want to automate a task, just use the macro recording facility. Record your
actions, and then open the macro in the Visual Basic code editor. Microsoft Word will have
generated the Visual Basic code that executes the actions you performed while recording.
Translating that code to PowerShell should be relatively easy.

Scripting Microsoft Excel
Just like with Microsoft Word, the Excel automation entry object is the application one. It has
the ProgID of Excel.Application. Once we create it, we can use it to get to a Workbook object
using the document Workbooks collection. Workbooks have a collection of Worksheet objects
that they make available through the Worksheets property. Once we get hold of a worksheet, we
can get a cell or a range of cells.

As with text ranges in Microsoft Word, cell ranges are a way to refer to a group of cells, so that
we can modify their formatting and other properties in common. A Range object may contain one
or many cells, while a range contains a collection of cells that we can access programmatically.

Reading Cell Values from a Document

If I had to pick only one operation that we could do when automating Microsoft Excel, it would
probably be the ability to retrieve cell values from within a document. We can do that using the
Cells property on the Worksheet object. It contains a COM collection that we can use to get a
cell by its row and column index. COM collections are a bit odd; by convention, they are indexed
through the Item method. Languages like Visual Basic handle that method gracefully, and
the collection can be indexed in a manner similar to the bracket notation we use for indexing
PowerShell collections—the only difference being that Visual Basic uses parentheses instead.
Another thing to keep in mind is that COM collections follow the time-honored Visual Basic
traditions when it comes to indexing items. The first item is available at index 1, whereas the
standard .NET and PowerShell collections use the index 0 for that.

As an example for reading cell values from a workbook, we can imagine that we have a list
of FBI agents. The list is saved in a workbook called Agents.xlsx, and it uses two columns: one
that contains agent first names and another, the last names. Figure 19-4 shows how that docu-
ment looks in Excel.

Deshev_940-3C19.fm Page 378 Thursday, January 17, 2008 3:30 PM

C H AP TE R 1 9 ■ TA L K I N G T O CO M O B J E C TS 379

Figure 19-4. Microsoft Excel showing our agent list

We will be creating a script called Get-NonEmptyCells.ps1 that will read the agents’ names
from the document. Since we do not know how many records we have, we will loop over the
worksheet rows until we get a line that has an empty value for either the first or the last name.
Let’s take a look at the code:

$excelApp = New-Object -COM Excel.Application
$file = (dir Agents.xlsx).FullName

$book = $excelApp.Workbooks.Open($file)

$sheet = $book.Worksheets.Item(1)

$row = 1
while($true)
{
 $firstName = $sheet.Cells.Item($row, 1).Value2
 $lastName = $sheet.Cells.Item($row, 2).Value2

 if (!$firstName -or !$lastName)
 {
 break;
 }

Deshev_940-3C19.fm Page 379 Thursday, January 17, 2008 3:30 PM

380 CH AP T E R 1 9 ■ T AL K IN G TO C OM OB J E CT S

 "$firstName $lastName"
 $row++
}

$excelApp.Quit()
$book = $null
$sheet = $null
$excelApp = $null
[GC]::Collect()

Just as with Microsoft Word documents, we again need to provide a full path to our work-
book. The code opens the workbook and gets the first worksheet. Note that it gets the worksheet at
index 1, as the collection is one based. After that, we need a loop that will go through the rows
one at a time. We get the cell objects through the worksheet Cells property; we use the Item
method to get the cell at the specified row and column index. The easiest way to get a cell object’s
text is to use its Value2 property. A cell can contain all types of values, and if we wanted to get
those, we would use the Value property and convert that to the type of object we are after. Since
we are working with text only, we will use Value2 as a simpler way to get a cell’s text content.

An important thing to note here is that we need to clean up after we are done. We start by
instructing the application to exit by calling its Quit() method. Unfortunately, we need to do
much more—we need to explicitly set to $null all variables that may point to an Excel COM
object. We also need to trigger garbage collection explicitly by calling [GC]::Collect(); doing
so will finally make the Excel process exit.

■Note Cleaning up after a script that uses Excel may not be a walk in the park. Due to the nature of memory
management in COM, an object will stay in memory until there are no clients holding references to it. The .NET
object wrappers that PowerShell uses hold a reference to objects, and that may prevent the Excel process
from exiting, even when we call the application Quit() method. This is a limitation of Excel automation and
has been plaguing script authors for several years. For example, there is a Microsoft Knowledge Base article
(KB317109) documenting the issue that dates back to September 2004.

To make sure that Excel exits cleanly after your script finishes, always set all your variables that point to
Excel objects to $null. There is no good way to find a variable that you forgot to set to null once you have a
hung Excel process. The best way to deal with that is to extract data from the COM objects and set the vari-
ables that point to them to $null as soon as you are done with them. Even if you do that, do not forget the
[GC]::Collect() call at the end of your script. It will release the object wrappers, and if you have done a
good job at setting variables to $null, Excel will exit.

Finally, here is the output that we get from our script—a string containing the agent’s full
name for every line in the worksheet:

PS> .\Get-NonEmptyCells.ps1
Fox Mulder
Dana Scully

Deshev_940-3C19.fm Page 380 Thursday, January 17, 2008 3:30 PM

C H AP TE R 1 9 ■ TA L K I N G T O CO M O B J E C TS 381

■Caution Excel is extremely sensitive to the Windows regional settings, and a lot of features depend on
information extracted from those settings: number and date formats, sorting rules, and so on. Excel relies on
components, called multilingual user interface packs, to provide support for different cultures’ specific settings.
Automating Excel from a system having a specific culture configured in its regional options control panel requires
that the corresponding multilingual user interface pack be installed on the machine. If it’s not installed, you
may get a cryptic “Old format or invalid type library.” error message, and your script will not run. This often
happens when Excel has been installed with its English (United States) interface pack, and then the system
has been configured with another default language, say English (United Kingdom). To fix this problem, you
have to either install the English (United Kingdom) multilingual user interface pack or switch the system back
to English (United States) from the control panel. The problem is documented in detail in a Microsoft Knowledge
Base article available at http://support.microsoft.com/default.aspx?scid=kb;en-us;320369.

Very often, we know the exact location of our data, and we do not need to loop over all cells
until we get the values we need. In the case of our agents list, we know that the data we need is
in the A1:B2 range. We can pass that to the worksheet Range() method and get a Range object
back. We can then loop over the cells in the range and get their values. To demonstrate that,
let’s create another script, Get-CellsInRange.ps1. Here is its code:

$excelApp = New-Object -COM Excel.Application
$file = (dir Agents.xlsx).FullName

$book = $excelApp.Workbooks.Open($file)

$sheet = $book.Worksheets.Item(1)
$cellRange = $sheet.Range("A1:B2")

$cells = [object[]] $cellRange.Cells
$cells | select Value2

$excelApp.Quit()

$cellRange = $null
$cells = $null
$book = $null
$sheet = $null
$excelApp = $null
[GC]::Collect()

We pass the range of cells that interests us to the worksheet Range() method. We get back
a range object that contains the cells in question. We use the standard [object[]] cast trick to
convert the result to a PowerShell collection. We pass that collection through the select cmdlet,
which, in turn, gets just the Value2 property value. The script ends with the now familiar proce-
dure of exiting the application, setting all variables to $null, and triggering garbage collection.

Except for the clumsy clean up, our script works just fine. Here is what we get back when
we run it:

Deshev_940-3C19.fm Page 381 Thursday, January 17, 2008 3:30 PM

382 CH AP T E R 1 9 ■ T AL K IN G TO C OM OB J E CT S

PS> .\Get-CellsInRange.ps1

Value2

Fox
Mulder
Dana
Scully

Modifying Workbook Content

Most of the time, we do not need Excel automation if we just want to import some data in a
workbook; PowerShell can export any object to a comma-separated file with its Export-Csv
cmdlet. There are cases, though, where we need to modify an existing document or dabble with
Excel-specific functionality like changing a cell’s appearance. This is where we have to reach
for COM automation in our virtual bag of tricks.

To demonstrate how we can fill a workbook with some data, we will be creating a script,
called Export-ProcessesToExcel.ps1, which will fill the first two columns with the process ID
and process name, respectively. We can set the actual cell text through the Value2 property. At
the end, to show off and make the text stand out, we will select the first two columns and bold
the text and color it in red. Without making you wait any longer, here is the script code:

$excelApp = New-Object -COM Excel.Application
$file = Join-Path (Get-Location) "Processes.xlsx"

$book = $excelApp.Workbooks.Add()

$sheet = $book.Worksheets.Item(1)

$processes = Get-Process

#set cell contents
for ($i = 1; $i -le $processes.Count; $i++)
{
 $processIdCell = $sheet.Cells.Item($i, 1)
 $processIdCell.Value2 = $processes[$i].Id
 $processNameCell = $sheet.Cells.Item($i, 2)
 $processNameCell.Value2 = $processes[$i].Name
}

$processIdCell = $null
$processNameCell = $null

#bold the A and B columns and make their text red
$columnsABRange = $sheet.Range("A:B")
$columnsABRange.Font.Bold = $true
$columnsABRange.Font.ColorIndex = 3
$columnsABRange = $null

Deshev_940-3C19.fm Page 382 Thursday, January 17, 2008 3:30 PM

C H AP TE R 1 9 ■ TA L K I N G T O CO M O B J E C TS 383

$book.SaveAs($file)
$excelApp.Quit()

$book = $null
$sheet = $null
$excelApp = $null
[GC]::Collect()

We get process information using the Get-Process cmdlet (refer to Chapter 14 for more on
working with it). The really interesting part of the script is the moment where we create a range
that contains the first two columns. We use the Excel A:B cell range syntax to do that. Modifying
the font settings for the range object will affect all the cells it contains. Note the necessary evil
of adding all those assignments to $null and the garbage collection trigger. I really hope that
problem gets resolved in the future; our sample script would be about half its size if we did not
need to manually clean our variables.

Running the script does not produce much output. We need to open the Processes.xlsx
workbook that it generates to see if it really worked. Figure 19-5 shows how it looks.

Figure 19-5. Microsoft Excel showing our list of processes

Going Further

Excel is a very complex application, and you can do many wonderful things using its automa-
tion facilities. Just as is the case with Word automation, the objects exposed to PowerShell are
the same objects that are available to VBA code. Make sure you go through the “Visual Basic
Reference” section in the product help.

Deshev_940-3C19.fm Page 383 Thursday, January 17, 2008 3:30 PM

384 CH AP T E R 1 9 ■ T AL K IN G TO C OM OB J E CT S

Driving Internet Explorer
Being able to automate a web browsing session can yield a lot of benefits for many people. In
Chapter 17, you saw how to perform raw HTTP requests against web servers; those techniques
were appropriate for downloading a single file or a document. Often, getting information from
a web site involves more complex actions. At the simplest, many sites require authentication
that involves filling out a form and submitting it to the server. We can push our knowledge or
the HTTP protocol to the limit and do that by crafting a proper HTTP POST request that contains
all the form values. We could then parse the response, get the session cookie value, and use
that for all subsequent requests. While that can be done, it is tedious, hard, and error prone.
Luckily, the Internet Explorer browser provides a rich object model based on COM that we can
use to initiate and script a browser session. We can do almost anything we would have done in
person through the automation interface. This is so convenient that people have built web site
test tools that automate Internet Explorer to simulate user interaction: typing text, clicking
buttons, and much more. We can use the browser to build scripts that submit information to a
server or extract values from a web page.

A script entry point for scripting Internet Explorer is again the application object, and its
ProgID is InternetExplorer.Application. The automation paradigm we need to follow goes
like this:

1. Create an Internet Explorer application object.

2. Navigate to a URL.

3. Wait for the browser to load the document contents.

4. Perform any actions on the document.

5. Exit the application by calling the Quit() method.

Of all the steps, the third one needs the most explaining. Internet Explorer navigates and
downloads web page content in the background. That means that our script will not get blocked,
and it may crash if it tries to access the document contents before the document is loaded—
that is why we have to wait. We do that by blocking execution using the sleep cmdlet and periodi-
cally checking if the application Busy property has turned to $false. Only then it is safe to
access and modify the web page document.

Scripting a Browser Session

Let’s now use the Internet Explorer automation objects to open a browser window and perform
a search with Microsoft’s Live search engine available at http://www.live.com. We will create a
script, called Search-LiveCom.ps1, which will instantiate an Internet Explorer application, navi-
gate to the search engine page, fill in some text in the search box, and click the Search button.
It will then display the browser window, let us inspect the search results, and continue browsing
from there if we choose to. Before you continue and look at the script code, you may need to go
through the Internet Explorer 7 protected mode sidebar, which describes the security settings
under Windows Vista that may break your script.

Deshev_940-3C19.fm Page 384 Thursday, January 17, 2008 3:30 PM

C H AP TE R 1 9 ■ TA L K I N G T O CO M O B J E C TS 385

INTERNET EXPLORER 7’S PROTECTED MODE MAY BREAK YOUR SCRIPT

Internet Explorer 7 has an enhanced security mode, called protected mode, which works only on Windows
Vista. Having that enabled—and mind you, it is enabled by default—will break your scripts. The problem will
manifest as the sites your script tries to navigate to open in new windows. The new windows belong to another
Internet Explorer process, and you cannot manipulate those. The application object you originally created will
eventually disconnect from the real browser instance, and you may get the dreaded “The RPC Server is
unavailable” error. Internet Explorer’s protected mode mandates that opening a site that is in a different secu-
rity zone than the one the current window is browsing should always open in a new window. That also starts
a new browser process; this way, malicious code executing in one security zone does not have the slightest
chance of manipulating objects running in another security zone. Unfortunately, that breaks our scripts.

We have two ways to fix that: disable protected mode or add the site to our Trusted Sites zone. The first
option is the easiest. Just open the Internet Options dialog, go to the Security tab, and uncheck the Enable
Protected Mode check box. Figure 19-6 shows the security tab focusing the protected mode check box.

Figure 19-6. Internet Explorer’s Security settings tab and the protected mode check box

Disabling protected mode may be too much for most people. After all, there must have been a real reason
the Internet Explorer developers implemented that feature in the first place. If we would not want to compromise
our security just for the sake of being able to run a script or two, we could add the sites that we are visiting from
our scripts to the Trusted Sites zone. To do that, you must select the Trusted Sites zone in the Security tab
shown in Figure 19-6 and click the Sites button. Our scripts will be automating Live.com searches, so we must add
two sites to the list: http://www.live.com and http://search.live.com. Figure 19-7 shows how the
configuration must look.

Deshev_940-3C19.fm Page 385 Thursday, January 17, 2008 3:30 PM

386 CH AP T E R 1 9 ■ T AL K IN G TO C OM OB J E CT S

Figure 19-7. The Live.com sites added to the Trusted Sites security zone

Note that both sites are added with their http:// protocol URL, and that requires that you uncheck the
“Require server verification (https:)” check box.

Here is the code for our Search-LiveCom.ps1 script file:

function WaitForLoad ($ie)
{
 while ($ie.Busy)
 {
 sleep -milliseconds 50
 }
}

$ie = New-Object -COM InternetExplorer.Application
$ie.Navigate("http://www.live.com")
$ie.Visible = $true
WaitForLoad($ie)

$searchBox = $ie.Document.getElementById("q")
$searchBox.value = "`"Pro Windows PowerShell`""
$goButton = $ie.Document.getElementById("go")
$goButton.click();

There are two interesting things about the script: the WaitForLoad function and the text
box and button interaction. The WaitForLoad function checks if the browser is busy every
50 milliseconds. If it still is, it sleeps for another 50 milliseconds. We need the sleep call so
that we do not hog the entire CPU resources by doing a busy loop. Our users will not notice a
delay of up to 50 milliseconds after their page finishes loading while the script is sleeping.

Deshev_940-3C19.fm Page 386 Thursday, January 17, 2008 3:30 PM

C H AP TE R 1 9 ■ TA L K I N G T O CO M O B J E C TS 387

Once the page loads completely, we can start working with objects inside the document.
We get a real HTML document object from the Document property; it supports all the methods
and properties that a web developer would have available had he or she been writing JavaScript
code for the web page we just loaded. We use the getElementById() method to get a reference
to the textbox with the q ID—it is the one that holds the search query text. The Search button
has an ID of “go”, and we use it to get a reference to that object just like we did for the text box.
We set the text box text via its value property; we will be searching for the “Pro Windows Power-
Shell” string, surrounded with quotes to get an exact phrase match. To start the actual search,
we call the click() method on our button that submits the form data to the server. Initially, the
Internet Explorer window is not visible, but we set its Visible property to $true, so that we can
get a look at our search results. Figure 19-8 shows the end result.

Figure 19-8. Internet Explorer showing our Live.com search results

Extracting Data from the DOM Tree

Quite often, we do not want to display the browser window at all. All we want is a completely
unattended web session that will fetch some data from a remote server and not bother the user in
any way. To extract data from the document, we need to use the HTML document object model
(DOM) programming interface. It is a set of standard interfaces defined by the W3C that should be
available to JavaScript code running in any browser. Readers with some web scripting background
might have noticed the familiar getElementById() method calls in the previous example. We
can use the entire HTML DOM programming model that Internet Explorer implements from
our scripts. We can do that because all DOM objects in Internet Explorer are implemented as
COM objects, and that opens them up to the entire Windows scripting world.

Deshev_940-3C19.fm Page 387 Thursday, January 17, 2008 3:30 PM

388 CH AP T E R 1 9 ■ T AL K IN G TO C OM OB J E CT S

■Tip The DOM programming interfaces are documented both by the W3C and Microsoft. The W3C specifies
how things should work for all browsers. In reality, no browser implements the standard to the letter, and
using Microsoft’s documentation is best, as it covers Internet Explorer’s implementation. Since Internet
Explorer is the only browser scriptable through COM, you will not need other documentation. The documen-
tation is available at http://msdn2.microsoft.com/en-us/library/ms533050.aspx.

To test our abilities to manipulate the HTML DOM, we will create a new script called
Get-WebSearchResults.ps1. It is based on the previous example, but this time, it does not show
any windows to the user. It silently navigates to the Live.com search page, submits a query, and
then extracts the links to found pages from the search results. The script relies on the fact that
Live.com generates a <div> HTML element with an ID of “results” that contains a bunch of
links pointing to the pages that we need. Links are <a> elements that have a href attribute
containing the URL we need. Here is the code of our script:

function WaitForLoad ($ie)
{
 while ($ie.Busy)
 {
 sleep -milliseconds 50
 }
}

$ie = New-Object -COM InternetExplorer.Application
$ie.Navigate("http://www.live.com")
WaitForLoad($ie)

$searchBox = $ie.Document.getElementById("q")
$searchBox.value = "`"Pro Windows PowerShell`""
$goButton = $ie.Document.getElementById("go")
$goButton.click();

WaitForLoad($ie)

$resultsDiv = $ie.Document.getElementById("results")
$links = [object[]] $resultsDiv.getElementsByTagName("a")
$realLinks = $links | where { $_.innerText -ne "Cached page" }
$realLinks | select innerText,href | Format-List

$ie.Quit()

The getElementsByTagName() method returns all child elements that have the specified tag;
we use that to get all links inside the “results” element. We filter out the links that contain the
text “Cached page”—we do not need those, as they point to the cached versions of the pages we
are after. Once we have the links we need, we get just their innerText and href properties and
pipe them through the Format-List cmdlet. Here is what we get when we run our script:

Deshev_940-3C19.fm Page 388 Thursday, January 17, 2008 3:30 PM

C H AP TE R 1 9 ■ TA L K I N G T O CO M O B J E C TS 389

PS> .\Get-WebSearchResults.ps1

innerText : Bookpool: Pro Windows PowerShell
href : http://www.bookpool.com/sm/1590599403

innerText : APRESS.COM : Pro Windows PowerShell : 9781590599402
href : http://www.apress.com/book/view/1590599403

innerText : Getting Started With Windows PowerShell
href : http://www.microsoft.com/technet/scriptcenter/topics/winps
 h/manual/start.mspx

innerText : Running Windows PowerShell Scripts
href : http://www.microsoft.com/technet/scriptcenter/topics/winps
 h/manual/run.mspx
...

Windows Script Host Code Interoperability
PowerShell and .NET are really cool technologies, but it will take time until they take over the
entire world. There is a lot of useful code out there written in VBScript, JScript, or other Windows
Script Host–compatible languages. It would be very unwise, and maybe downright impossible,
to throw all that code away and start rewriting everything in PowerShell. Besides existing code, the
Web is full of examples automating various programs all written in VBScript or JScript. Sometimes,
the examples are not short, and we cannot convert them to PowerShell on the fly. We need a
usable way for our PowerShell code to interoperate with code written in JScript and VBScript.

Luckily, we have a good tool that can help us here—the MSScriptControl COM object
available through the MSScriptControl.ScriptControl ProgID. It has been designed so that it
can host a script environment; we can register code with it and later execute that code. We can
use this object as a way to load an existing VBScript or JScript file from PowerShell. Once loaded, we
can call functions inside those files, pass parameters, and get return values.

To demonstrate how the script control object works, we will work with two script files that
know how to calculate the size of a file in bytes. One of them, FileSize.js, is written in JScript,
and the other, FileSize.vbs, in VBScript. Both files define a function, GetFileSize(), that accepts
a path to a file and returns a nicely formatted string containing the path to the file and the file
size. Here is the JScript implementation:

function GetFileSize(filePath)
{
 var fileSystem = new ActiveXObject("Scripting.FileSystemObject");
 var file = fileSystem.GetFile(filePath);
 return (filePath + " has " + file.Size + " bytes.");
}

And here is the VBScript one:

Deshev_940-3C19.fm Page 389 Thursday, January 17, 2008 3:30 PM

390 CH AP T E R 1 9 ■ T AL K IN G TO C OM OB J E CT S

Function GetFileSize(filePath)
 Dim fileSystem
 Set fileSystem = CreateObject("Scripting.FileSystemObject")

 Dim file
 Set file = fileSystem.GetFile(filePath)
 GetFileSize = filePath & " has " & file.Size & " bytes."
End Function

As you can see, each language has its quirks in declaring functions and variables and working
with COM objects.

To be able to invoke the JScript function in PowerShell, we need to read the FileSize.js
file contents and pass them to the script control AddCode() method. That method will evaluate
the function definition and make it available for later use.

■Note It is best to load script files that contain only function definitions inside the script control. The AddCode()
method evaluates code that has been given to it, and it will execute any code that has been defined outside a
function definition. That can lead to unexpected results and undesired behavior. Your script files may need
some modifications so that code is properly separated in functions before it can be loaded in the script control.
The best way to look at such script files is as if they are script libraries that expose functions and make them
available to PowerShell code.

Evaluating Code
After we have our script code included in the script control, we can call the functions defined
in JScript. To do that, we can use either the Eval() method or the Run() one. The Eval() method
takes a string as its input and executes it. When it is done, it returns the result to the caller—the
PowerShell script in our case. The Run() method is more structured. It accepts several param-
eters: the first one is a function name, and the rest are parameters that will be passed to the
function. The method returns the function return value to the PowerShell script. To see every-
thing in action, we will create a script, called JScriptEval.ps1, which will call the JScript function
using both Eval() and Run(). Here is the code:

$jscript = New-Object -COM MSScriptControl.ScriptControl
$jscript.Language = "JScript"
$jsLines = Get-Content "FileSize.js"
$jsCode = [string]::Join("`n", $jsLines)
$jscript.AddCode($jsCode)
$fileName = (dir FileSize.js).FullName

Write-Host "Using Eval"
$jscript.Eval("GetFileSize(`"$($fileName.Replace('\', '\\'))`")")

Write-Host "Using Run"
$jscript.Run("GetFileSize", $fileName)

Deshev_940-3C19.fm Page 390 Thursday, January 17, 2008 3:30 PM

C H AP TE R 1 9 ■ TA L K I N G T O CO M O B J E C TS 391

The code starts with an important step in setting up the script control object—by setting
the Language property to “JScript”, it tells it to interpret all code as JScript. It then uses the
Get-Content cmdlet to get all the lines inside the FileSize.js file. The code next assembles the
resulting script code by joining the lines with a new line symbol in between and passes that to
AddCode().

Note the huge difference between calling Eval() and Run(). Eval() needs to escape the
double quotes to generate a JScript string literal. Additionally, it has to replace backslashes
with double backslashes, because the backslash is a special escape character in JScript, and it
needs to be escaped in string literals. The Run() method call is a lot better; we do not need to
escape anything, because we use the script control facilities for passing parameters. Here is
what happens when we run our script:

PS> .\JScriptEval.ps1
Using Eval
Z:\19 - Talking to COM Objects\FileSize.js has 211 bytes.
Using Run
Z:\19 - Talking to COM Objects\FileSize.js has 211 bytes.
PS>

The results from the Eval() and Run() methods are identical, and it is always a better idea
to use the Run() one and spare yourself a headache or two.

Let’s now see how things work on the VBScript side. We will create a script, similar
to the preceding one that calls the GetFileSize() defined in VBScript code. We will call it
VBScriptEval.ps1; here is the code:

$vbscript = New-Object -COM MSScriptControl.ScriptControl
$vbscript.Language = "VBScript"
$vbsLines = Get-Content "FileSize.vbs"
$vbsCode = [string]::Join("`n", $vbsLines)
$vbscript.AddCode($vbsCode)
$fileName = (dir FileSize.vbs).FullName

Write-Host "Using Eval"
$vbscript.Eval("GetFileSize(`"$fileName`")")

Write-Host "Using Run"
$vbscript.Run("GetFileSize", $fileName)

It is pretty similar to the JScript version you saw before. The biggest difference is the Language
property value that we set to the script control object. A small thing to note here is that we do not
need to escape backslash characters in our path when we call Eval() here, because backslashes
have no special meaning in VBScript. Here is what we get when we run the script:

PS> .\VBScriptEval.ps1
Using Eval
Z:\19 - Talking to COM Objects\FileSize.vbs has 258 bytes.
Using Run
Z:\19 - Talking to COM Objects\FileSize.vbs has 258 bytes.
PS>

Deshev_940-3C19.fm Page 391 Thursday, January 17, 2008 3:30 PM

392 CH AP T E R 1 9 ■ T AL K IN G TO C OM OB J E CT S

Exposing Objects from MSScriptControl
The Eval() and Run() methods do the job of providing access to foreign functions quite well. They
still feel like a bad hack, because they do not behave like real methods. We can do better if we
exploit a feature of the script control object—dynamic object generation. The MSScriptControl
object has a CodeObject property that returns an anonymous object composed of the scripts
added to the script control. The code object will expose all functions that have been added as
public methods. This allows us to have some nice syntax that practically makes foreign script
objects indistinguishable from regular .NET objects.

We can use that to call our JScript function. We will create a new script file,
JScriptCodeObject.ps1, which will again configure a script object, but this time will call its
functions through the dynamically generated object. Here is the code:

$jscript = New-Object -COM MSScriptControl.ScriptControl
$jscript.Language = "JScript"
$jsLines = Get-Content "FileSize.js"
$jsCode = [string]::Join("`n", $jsLines)
$jscript.AddCode($jsCode)
$fileName = (dir FileSize.js).FullName

$fileSize = $jscript.CodeObject
$fileSize.GetFileSize($fileName)

The syntax is much friendlier now. Let’s see what we get when we run the script:

PS> .\JScriptCodeObject.ps1
Z:\19 - Talking to COM Objects\FileSize.js has 211 bytes.
PS>

Let’s now compare that to the VBScript version. Here is the code for the
VBScriptCodeObject.ps1 script that does the same thing for our VBScript code:

$vbscript = New-Object -COM MSScriptControl.ScriptControl
$vbscript.Language = "VBScript"
$vbsLines = Get-Content "FileSize.vbs"
$vbsCode = [string]::Join("`n", $vbsLines)
$vbscript.AddCode($vbsCode)
$fileName = (dir FileSize.vbs).FullName

$fileSize = $vbscript.CodeObject
$fileSize.GetFileSize($fileName)

There’s not much of a difference from the JScript version. Here is what happens when we
run it:

PS> .\VBScriptCodeObject.ps1
Z:\19 - Talking to COM Objects\FileSize.vbs has 258 bytes.
PS>

Deshev_940-3C19.fm Page 392 Thursday, January 17, 2008 3:30 PM

C H AP TE R 1 9 ■ TA L K I N G T O CO M O B J E C TS 393

Summary
COM scripting can be both a very rewarding and a very frustrating experience. PowerShell
provides excellent support for working with COM objects, but as you have seen from the exam-
ples in this chapter, hidden things still may come out to bite you when you least expect them.
Hopefully, the examples we have gone through have covered the major interoperability prob-
lems, like working with collections and indexer properties, so that you know and fix them when
you see them. What is left now is to explore the various applications and parts of the operating
system that you use in your daily work. Chances are, those applications and services already
have a COM automation interface exposed that is waiting for you to take advantage of it.

Deshev_940-3C19.fm Page 393 Thursday, January 17, 2008 3:30 PM

395

■ ■ ■

C H A P T E R 2 0

Managing Windows with WMI

Managing a large heterogeneous network has always been a formidable task. It is easy to
manage a single program or a service running on the local machine using various automation
interfaces such as PowerShell cmdlets, COM objects, or even .NET-based programmability. We
get to the hard part when we throw distributed operations in the mix. What if the program we
need to manage runs on a computer behind a firewall? What if it is not a program at all? It may
be a hardware device such as a network router. This is where Windows Management Instrumenta-
tion (WMI) can help us. WMI is a set of technologies that work together to provide uniform access
to objects on a network. We can use it to query services for information, extract all sorts of data,
trigger commands, and change configuration options.

WMI objects are special types of objects that are exposed to Windows programs as COM
objects. They are not regular COM objects in the sense that they provide standard interfaces
and services built on top of COM that we can use. The PowerShell designers have recognized
the important part WMI plays in Windows administration, and since PowerShell is primarily
an administration tool, they have taken extra care to make working with WMI objects as easy
as possible.

A Brief History of WMI
By 1996, a number of companies had recognized the need for a new approach to systems
management that offered better standardization and tighter integration among components.
The most popular standard management protocol at the time, Simple Network Management
Protocol (SNMP), had proven inadequate to meet all the management needs of large enterprises. It
is, at its essence, simple, which means that it was targeted at managing network devices, such
as routers. Conceived at the end of the 1980s, the protocol had to support devices with little
computational power, and thus it had to be extremely lightweight. That requirement unavoid-
ably limited the functionality it could offer. Another thing that needs mentioning is that being
only a protocol, SNMP cannot offer the full management support that the typical enterprise
system needs. At minimum, we need central object repositories that allow us to discover objects
on the network and scripting support.

Those shortcomings led to several companies, including Microsoft Corporation, Cisco
Systems, and Intel Corporation, getting together and starting the Web-Based Enterprise
Management (WBEM) initiative. It was an effort of providing a complete standard infrastructure
for managing all components in a system. The Distributed Management Task Force (DMTF)
consortium has subsequently taken ownership of the WBEM initiative and its standardization
and marketing. At this moment, we have several implementations of the WBEM infrastructure

Deshev_940-3C20.fm Page 395 Tuesday, January 22, 2008 6:45 AM

396 CH AP T E R 2 0 ■ M A N A G IN G W IN D O W S W I TH W M I

and the standards that the DMTF has defined are supported by many operating system, programs,
and hardware devices. The most complete implementation of the standard by far has been
Microsoft’s—yes, WMI is an implementation of the WBEM standard.

Microsoft has chosen WMI as the strategic technology for supporting the Windows adminis-
tration model. The first version of WMI saw the light of day with the Windows 98 and Windows 2000
releases. The technology has been deeply integrated in the operating system kernel, and anyone
can use it to obtain information on just about any operating system, hardware device, or a piece
of third-party software. The only requirement is that the managed object is running on or is
connected to a Windows system and there exists a WMI provider that supports it.

WBEM and WMI Components
I have been referring to WBEM as a set of standards and an approach to systems management.
To fully satisfy the management needs of the distributed enterprise environment, we need more
than just a network protocol specification, so the DMTF folks have defined several components
that are the building blocks for WBEM and WMI.

The Common Information Model
The ultimate goal of any standardization effort is to provide a uniform way of accessing all objects
on the network. “Objects” typically means components in a software system, but WBEM goes
even further by including hardware devices in that category. After all, there is no point in config-
uring a service running on one machine differently than you’d configure a hardware device
driver or even a network router. To make that standardization possible, we need a way to
define an object and its properties and operations. This is what the Common Information
Model (CIM) does for us. The CIM standard defines an object-oriented information model that
describes all manageable entities as objects that have a set of properties and operations. The CIM
is based on the Unified Modeling Language (UML) that is the de facto standard for describing an
object-oriented system. Being so close to UML makes CIM familiar to people with an object-
oriented background, as it uses the same concepts present in .NET and other object-oriented
systems. Object operations are defined by classes, and classes are cleanly separated in name-
spaces. Not only that, classes can inherit from other classes, and that allows easy customization or
extension of existing classes.

■Note A WMI object always belongs to a class. A class is, in short, the object type. Classes define how
objects behave—what their properties and methods are. WMI classes are different than .NET classes, though.
We cannot use the GetType() method to distinguish between different types of WMI objects; instead, we
have to use their special __CLASS property. See the “WMI System Properties” section for details on getting
information about a WMI object’s type.

CIM classes are provided and implemented by special providers that have been registered
with the system. In the case of WMI, providers are COM DLLs that have been registered with
the system registry. This architecture allows for easy extensibility. A program or service can

Deshev_940-3C20.fm Page 396 Tuesday, January 22, 2008 6:45 AM

CH AP T E R 2 0 ■ M A N AG IN G WI N D O W S W I TH W M I 397

expose a management interface by creating a provider. That provider will register additional
classes in a different namespace, but other than that, administrators will be able to manage
that piece of software just as they would manage any other WMI component.

The CIM standard defines a set of standard classes, such as CIM_Process, that must be
present on any system. It is good knowing about those and using them where possible, but that
may not be sufficient for our needs at all times. The standard cannot possibly describe every-
thing about an object and yet be as generic as possible. For example, a Windows process is a bit
different than a process running on a UNIX system. There are management operations for a
Windows process that would make no sense in a UNIX context. The WMI designers at Microsoft
have solved this problem by extending the base CIM classes and using them wherever possible.
To continue with the process example, WMI offers a Win32_Process class that inherits from
and, therefore, extends the CIM_Process one. A Win32_Process object is still a valid CIM_Process
object and supports all operations a CIM_Process would support. The inheriting class adds
to the base properties; Win32_Process adds several Windows-specific properties, such as
ExecutablePath and ThreadCount.

Network Transport
Object and information models are only a piece of the entire management puzzle. We need to
be able to talk to objects anywhere on the network, and to be able to do that, we need a standard
protocol. One of the first attempts to specify a standard was DMTF’s CIM-XML protocol, which
specifies object operations in XML and uses HTTP to transport the XML messages. For one
reason or another, Microsoft did not choose to implement CIM-XML for WMI. WMI uses the
Distributed COM (DCOM) infrastructure to connect to objects running on the network. That
approach has the benefit of integrating with an existing infrastructure on Windows systems.
Unfortunately, it also makes WMI incompatible with other WBEM implementations at the
network-protocol level. For example, a Java client running on Solaris will only be able to query
its own WBEM implementation, and there is no way for it to touch a WMI object that is a part
of a Windows network.

Recently, the DMTF have defined another WBEM communications protocol: Web Services
for Management, or WS-Management. It uses SOAP web services running over HTTP to encode
all management operations. The WS-Management protocol has been developed as a way to
provide a uniform protocol for managing all types of devices. The greatest benefit of using
SOAP web services is that they are already supported by many languages and programming
platforms, so implementing a management client should not be a hurdle. In the previous
scenario, the Java client would have no problem connecting to Windows objects. Microsoft
already has an implementation of the WS-Management standard in production; it is called
Windows Remote Management (WinRM). It is bundled with Windows Vista, and you can
install it as an add-on for previous versions of Windows. While we will be using the DCOM-
based WMI protocol in this chapter, it may be useful to know that you can access the same type
of WMI objects via WinRM.

Object Discovery
An important part of working with objects in a distributed environment is locating them. Knowing
that you want to locate a notepad.exe process and terminate it is not enough; you need to know the
machine that the process is running on and, if the machine is running several notepad.exe

Deshev_940-3C20.fm Page 397 Tuesday, January 22, 2008 6:45 AM

398 CH AP T E R 2 0 ■ M A N A G IN G W IN D O W S W I TH W M I

processes, the process ID of the victim. WMI can use monikers, or paths that uniquely identify an
object on the network. We can use two kinds of paths: relative and absolute. Relative paths identify
objects running on the current computer and look like Win32_Process.Handle="2824" or Win32_
Service.Name="Dnscache" for the process with the 2824 ID and the DNS caching service, respec-
tively. Absolute paths look similar, and they just add the full machine name and the class
namespace before the relative portion.The absolute paths corresponding to the relative ones
that we saw previously look like \\MACHINENAME\root\cimv2:Win32_Process.Handle="2824" and
\\MACHINENAME\root\cimv2:Win32_Service.Name="Dnscache", respectively. Having an absolute
path means that we can get a reference to the target object whether or not we run our client code
on the same machine.

Another way to discover and access objects is to use object queries. WBEM defines a standard
query language—the CIM Query Language, which is a subset of the SQL language used to query
relational databases. WMI has a different query language, again based on SQL—the WMI Query
Language (WQL). The good news is that CIM Query Language and WMI are very similar. Both
support only data retrieval and lack SQL’s data modification features like the UPDATE, DELETE,
and INSERT statements. In this chapter, we will be working with WQL. The query language makes
classes look like database tables. Object instances are represented by rows and properties
define columns. Each object exposes its property values as cell values for the corresponding
column definitions. To get a feeling of what a query looks like, let’s look at a query that returns
all processes running on the system. The WQL code looks like SELECT * FROM Win32_Process.
That query requests all instances of the Win32_Process class, and the asterisk (*) is a shorthand
notation that specifies that all available properties should be returned. We can specify a subset
of properties and, in addition, filter the results; here is the query that will return the name and
priority for all processes that start with the letter “A”:

SELECT Name,Priority FROM Win32_Process WHERE Name LIKE 'A%'

The LIKE operator in our query uses the % symbol to denote zero or more repetitions of any
character.

PowerShell’s WMI Support
Now that we have had all the theory behind us, we can move to something real and tangible.
What does it take to work with WMI objects from within PowerShell? The standard approach
before PowerShell was to use the scripting API exposed as a set of COM objects. While writing
COM client code is possible in every language, the typical WMI client code was written in VBScript,
as that was easiest to do. The code involved getting an instance of the CIM object manager and
giving it a WQL query. The result was a collection that was enumerated using a standard For
Each loop that works in the same way as the foreach loop does in PowerShell. Just to get a taste
of what the code is like, let’s take a quick look at the winword_pid.vbs script that will get my
winword.exe processes’ IDs:

strComputer = "."
classNamespace = "winmgmts:\\" & strComputer & "\root\cimv2"
Set objWMIService = GetObject(classNamespace)

Deshev_940-3C20.fm Page 398 Tuesday, January 22, 2008 6:45 AM

CH AP T E R 2 0 ■ M A N AG IN G WI N D O W S W I TH W M I 399

query = "SELECT * from Win32_Process WHERE Name = 'winword.exe'"
Set results = objWMIService.ExecQuery(query)
For Each process in results
 Wscript.Echo "ProcessId: " & process.ProcessId
Next

Here is what running the script looks like when we use the Windows Script Host console
application host, cscript.exe:

PS> cscript .\winword_pid.vbs
Microsoft (R) Windows Script Host Version 5.7
Copyright (C) Microsoft Corporation. All rights reserved.

ProcessId: 256

Voilà! I have only one instance of Microsoft Word running on my machine. What bothers
me, and probably you too, is that, although the code gets the job done, it looks ugly. It is too
verbose! I cannot believe we need eight lines of code to get a single object. Hang on—PowerShell
does far better.

Get-WmiObject: The WMI Query Tool
The entry point for all WMI queries in PowerShell is the Get-WmiObject cmdlet. It takes a query
and sends it to the CIM object manager. The result is a PowerShell collection that contains zero
or more System.Management.ManagementObject objects. Those objects are the .NET wrappers
for the CIM objects that we get back from WMI.

The VBScript code you saw in the preceding example is too verbose, because the COM
objects we work with lack good default values for their parameters. The Get-WmiObject creators
have recognized that as a problem and have chosen meaningful defaults. For example, we do
not need to specify the machine name; if we do not, the cmdlet assumes we want an object
running on the local machine. We do not need a namespace too; the default points to the most
popular root\cimv2 namespace. That namespace is likely to hold most of the objects we will
ever need to manage: files, processes, services, network settings, device configurations—it is all
there. Now, using the defaults, let’s see how the Get-WmiObject version of the example we saw
previously looks. We will create a new script, winword_pid.ps1, that does the same thing. Here
is the code:

$query = "SELECT * from Win32_Process WHERE Name = 'winword.exe'"
Get-WmiObject -query $query | select ProcessId

The eight lines we needed in VBScript have gone down to two. Apart from relying on the
better defaults, we use a PowerShell idiom to avoid looping through the result collection. Selecting
and displaying a property value is just a matter of piping the result through the select cmdlet.
Here is the output we get after running the script:

PS> .\winword_pid.ps1

 ProcessId

 256

Deshev_940-3C20.fm Page 399 Tuesday, January 22, 2008 6:45 AM

400 CH AP T E R 2 0 ■ M A N A G IN G W IN D O W S W I TH W M I

The preceding code uses the -query parameter to pass a fully specified WQL query. The
WQL language SELECT statement can specify the properties we are interested in. We can use
that to get a subset of an object’s properties. That feature of the language has been meant to
provide a way to reduce the amount of data that gets sent over the network in cases where we may
be retrieving large collections of objects from remote machines. Our example runs on the local
machine and specifies an asterisk (*) as the property list (the asterisk is shorthand specifying all
properties). We do not need to optimize network traffic for local queries, and Get-WmiObject allows
us to skip that part entirely by specifying the WMI class whose instances we want to retrieve. In
the class case, we need to provide a filter string that is just the WHERE clause of our query without
the “WHERE” string. We can shorten our command even further by using the convenient
gwmi alias for the cmdlet. Here is how a command that gets the winword.exe process instance
looks now:

PS> gwmi -class Win32_Process -filter "Name = 'winword.exe'"

ProcessName : WINWORD.EXE
Handles : 397
VM : 369500160
WS : 37044224
...

We can use our Get-WmiObject to query objects running on remote machines. To do that,
we need to provide the -computer parameter. Accessing objects on another computer immedi-
ately raises questions about security. By default, the cmdlet will use our Windows domain
credentials, but we can override that by providing the -credentials parameter. We can pass a
real PSCredential object that we can obtain using the Get-Credential cmdlet. The cmdlet will
get the credential by popping up a dialog before the user asking for a user name and password.
There is an easier way—we can provide a user name string, and Get-WmiObject will ask for the
password using the same credentials dialog. Here is how to use that to get an instance of the
DNS service running on our WIN2K3-TEST machine:

PS> gwmi -class Win32_Service -filter "Name = 'DNS'" -computer WIN2K3-TEST `
-credential Administrator

ExitCode : 0
Name : DNS
ProcessId : 1300
StartMode : Auto
State : Running
Status : OK

The preceding command will display the credentials dialog shown in Figure 20-1. If the
user name and password are correct, we will get back an instance of our service.

Deshev_940-3C20.fm Page 400 Tuesday, January 22, 2008 6:45 AM

CH AP T E R 2 0 ■ M A N AG IN G WI N D O W S W I TH W M I 401

Figure 20-1. The PowerShell credentials dialog

Language Support for WMI Objects
Before the second release candidate build’s release, the only WMI support in PowerShell was
provided by the Get-WmiObject cmdlet. Luckily, user feedback made the PowerShell team
reconsider that. At the last possible moment, they added several language enhancements that
simplify working with WMI objects. The most important enhancements are the ability to cast
specially formatted strings into WMI objects. This allows us to use strings as WMI object moni-
kers similar to URLs. The thing to keep in mind is that all casts that have been added are just
convenience features. Everything they do can be replicated using Get-WmiObject and some
knowledge about how WMI and CIM work.

The first convenience feature we are going to look into is the ability to convert strings
containing WQL queries into WMI searcher objects. The type literal for that is [wmisearcher]—
it will yield a ManagementObjectSearcher object. The only use we have for a searcher object is
calling its Get() method. That will execute the WMI query and will return any matching objects.
Returning to our winword.exe process example, here is how we can write it using a searcher
object:

PS> $query = "SELECT * from Win32_Process WHERE Name = 'winword.exe'"
PS> $searcher = [wmisearcher] $query
PS> $searcher.Get()

ProcessName : WINWORD.EXE
Handles : 474
VM : 400248832
WS : 31821824
...

Using WMI searchers over calling Get-WmiObject directly is purely a matter of personal
taste. There is no advantage to using one approach over the other when we need local objects.
The WMI searcher approach gets unwieldy when we want to retrieve objects from remote
machines. It might be possible to dig into the searcher object Scope property and configure the
proper settings for a remote connection, like the endpoint address, the CIM namespace, and

Deshev_940-3C20.fm Page 401 Tuesday, January 22, 2008 6:45 AM

402 CH AP T E R 2 0 ■ M A N A G IN G W IN D O W S W I TH W M I

the credentials, but that seems too hard. Calling Get-WmiObject and passing the -computer and
-credential parameters is much simpler.

Maybe the most useful cast is the one that converts an object path to a real object. It is very
convenient and saves us the necessity of storing unique parameters like process IDs or service
names in order to run a WQL query just to get to the real object at a later point in time. We can
use the [wmi] type literal and cast a relative or absolute object path. Here is how to obtain a
reference to the DNS cache service using both an absolute and a relative path:

PS> [wmi] '\\TESTMACHINE\root\cimv2:Win32_Service.Name="Dnscache"'

ExitCode : 0
Name : Dnscache
ProcessId : 1276
StartMode : Auto
State : Running
Status : OK

PS> [wmi] 'Win32_Service.Name="Dnscache"'

ExitCode : 0
Name : Dnscache
ProcessId : 1276
StartMode : Auto
State : Running
Status : OK

Using object paths to retrieve objects is really convenient as it is supported by all object
types and works for remote machines (when using absolute paths, of course). The alternative,
if we were using Get-WmiObject, would be to craft special WQL queries that would have to be
different for different types of objects. For example, the query for a process object would not
work for services, as processes use their Handle property as a path component while services
use the Name property. The only scenario where it would be best to use Get-WmiObject, again, is
when trying to connect to a remote machine with different credentials than the current one.

Until now, we have been working exclusively with WMI object instances. WMI allows us
to get a reference to classes, too. PowerShell makes that easier by allowing us to cast a string
containing a class’s name into the correct WMI class. The type literal that we need to use is
[wmiclass]. Getting a class allows us to call static methods, or methods that do not belong to an
object. To demonstrate that, we can get the Win32_Process class and create a new process by
calling its Create() static method. Here is how we can do that:

Deshev_940-3C20.fm Page 402 Tuesday, January 22, 2008 6:45 AM

CH AP T E R 2 0 ■ M A N AG IN G WI N D O W S W I TH W M I 403

PS> $processClass = [wmiclass] "Win32_Process"
PS> $processClass.Create("notepad.exe")

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 2
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ProcessId : 3476
ReturnValue : 0

The method returns a __PARAMETERS object that contains the newly created process’s
process ID. We could use that information later to obtain a reference to the process. This is
how to do that by crafting a path that uses the process ID as the Handle property value:

PS> [wmi] "Win32_Process.Handle=3476"

ProcessName : notepad.exe
Handles : 48
VM : 57446400
WS : 7352320
Path : C:\Windows\system32\notepad.exe
...

Again, the WMI class type cast syntax is really convenient—until you have to use it on a
remote machine. We need a way to get a reference to a class object using standard WQL and
pass that to Get-WmiObject. Luckily, the common information model contains class metadata
that we can use. We can get our class object by querying for meta_class object instances. This
is how to get the Win32_Process class using this method:

PS> gwmi -class "meta_class" -filter "__THIS ISA 'Win32_Process'"

Win32_Process

The filter uses the __THIS special property that points to the class object. The ISA operator
will return true if the current class is Win32_Process or inherits from Win32_Process.

Now that we know how to get hold of a WMI class using WQL, let’s do it for a remote machine.
To demonstrate that, we will create a new notepad.exe process on the WIN2K3-TEST machine:

Deshev_940-3C20.fm Page 403 Tuesday, January 22, 2008 6:45 AM

404 CH AP T E R 2 0 ■ M A N A G IN G W IN D O W S W I TH W M I

PS> $w32Proc = gwmi -class "meta_class" -filter "__THIS ISA 'Win32_Process'" `
-computer WIN2K3-TEST
PS> $w32Proc.Create("notepad.exe")

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 2
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ProcessId : 2876
ReturnValue : 0

The preceding command does not specify user credentials for logging in to the remote
machine; that means we are using the credentials of our currently logged on user.

■Note The process created on the remote computer will not have a visible window, as it does not interact
with the desktop of the currently logged on user. Windowed applications that wait for a user action before
exiting will hang forever and need to be terminated from the Task Manager. The bottom line is that you should
be using the remote Win32_Process technique only for launching commands that exit immediately after
they finish their jobs. Of course, you can also use this approach for launching long-running programs that may
be servicing local or network requests by users or other programs.

Exploring CIM Classes and Objects
One of my favorite PowerShell features—being able to poke at objects in the interactive command
prompt—is available with WMI objects too. You can get an object and interrogate it for new
features that you have not used yet. You can discover other objects in the process that can help
you do your job better. Not to mention that knowing how to look around the system will be of
immense value when troubleshooting problems.

Getting a List of Classes and Namespaces
The previous section introduced the meta_class WMI class. Every WMI class is actually an
instance of meta_class, and knowing that, we can retrieve a list of all classes in a namespace.
All we need is to issue a query that gets all instances of a given class. Here is how to do it with
Get-WmiObject:

Deshev_940-3C20.fm Page 404 Tuesday, January 22, 2008 6:45 AM

CH AP T E R 2 0 ■ M A N AG IN G WI N D O W S W I TH W M I 405

PS> gwmi -class "meta_class"

__SystemClass __thisNAMESPACE
__Provider __Win32Provider
Win32_OsBaselineProvider __ProviderRegistration
...

We get quite a long list with the base class name in the first column and the actual class in
the second one. If we are looking at narrowing results down, we can use the full power of the
WQL language and provide a filter. Here is how to get all classes whose names start with the
Win32 string:

PS> gwmi -class "meta_class" -filter "__CLASS LIKE 'Win32%'"

Win32_PrivilegesStatus Win32_JobObjectStatus
Win32_Trustee Win32_ACE
Win32_SecurityDescriptor Win32_ComputerSystemEvent
Win32_ComputerShutdownEvent Win32_IP4RouteTableEvent
Win32_SystemTrace Win32_ProcessTrace
Win32_ProcessStartTrace Win32_ProcessStopTrace
...

The Get-WmiObject cmdlet has a shortcut that can get all classes in a namespace. We can
do that by supplying the -list switch. Here is how:

PS> gwmi -list

__SystemClass __thisNAMESPACE
__Provider __Win32Provider
Win32_OsBaselineProvider __ProviderRegistration
...

There is a limitation to that approach, though; the -filter parameter does not work. If we
need to filter the results using WQL, we have to use the approach that gets all meta_class
instances, as shown in the preceding code.

All of the preceding queries worked with the default namespace, root\cimv2. To get classes
from other namespaces, we need to provide the -namespace parameter.

How do we know the namespaces on the system and how do we explore them? Again, we
need to get all instances of the __NAMESPACE class. Namespaces are hierarchical, and the root of
the hierarchy is at the root namespace. This is how to get all namespaces below root:

PS> gwmi -namespace root -class "__NAMESPACE" | select Name

Name

subscription
DEFAULT

Deshev_940-3C20.fm Page 405 Tuesday, January 22, 2008 6:45 AM

406 CH AP T E R 2 0 ■ M A N A G IN G W IN D O W S W I TH W M I

MicrosoftDfs
MSAPPS11
CIMV2
...
Microsoft
aspnet

Of course, getting namespaces below the ones we listed is a matter of changing the -namespace
parameter. This is how to get the namespaces below root\Microsoft:

PS> gwmi -namespace root\Microsoft -class "__NAMESPACE" | select Name

Name

SqlServer
HomeNet

WMI System Properties
Every WMI object has several special properties that allow us to extract system-related infor-
mation. The WMI documentation calls those “system properties.” We have already introduced
some of them in this chapter; they are the strange properties with names starting with double
underscores, __CLASS for example. We can use them to get additional information about an
object. Here is what they do:

• __CLASS: This property holds the name of the object’s class. We can use it to verify if a
query has returned objects of the class that we expect.

• __SUPERCLASS: This property holds the name of the name of the parent class.

• __DYNASTY: This one contains the top-level class from which the object’s class and all its
superclasses eventually derive.

• __DERIVATION: This is a collection of all the classes that the object’s class derives from.
The first element is the __SUPERCLASS value, and the last one, the __DYNASTY class.

• __NAMESPACE: This holds a string with the namespace that contains the object’s class.

• __GENUS: This property is used to distinguish between classes and objects. Class objects
have a value of 1 while objects contain a 2.

• __SERVER: This one contains the name of the machine that hosts the object.

• __PATH: This property holds the absolute, machine-qualified path to the object.

• __RELPATH: This one is the relative path to the object. It is valid only if the object and its
client run on the same machine.

• __PROPERTY_COUNT: This property contains the number of nonsystem properties that the
object has.

Deshev_940-3C20.fm Page 406 Tuesday, January 22, 2008 6:45 AM

CH AP T E R 2 0 ■ M A N AG IN G WI N D O W S W I TH W M I 407

Querying Hardware Devices
The examples you have seen so far have dealt with software entities only: processes, services,
and so on. WMI makes no distinction between hardware and software objects, and its tight
integration with the Windows kernel allows it to manipulate all sorts of devices. We can use it
to get information about different computers and their hardware configurations.

For example, we can get information about the currently installed hard drives by querying
the available Win32_DiskDrive objects. Here is what I get on my system:

PS> gwmi -class Win32_DiskDrive

Partitions : 2
DeviceID : \\.\PHYSICALDRIVE0
Model : ST3320620AS ATA Device
Size : 320070320640
Caption : ST3320620AS ATA Device

Partitions : 1
DeviceID : \\.\PHYSICALDRIVE1
Model : USB FLASH DRIVE USB Device
Size : 2056320000
Caption : USB FLASH DRIVE USB Device

I get a list of all drives, including my USB flash drive that is plugged in at the moment. The
preceding list contains physical drives only. We can also get information about the partitions
defined for the physical disks by using the Win32_DiskPartition class. For example, we can get
the boot partition on the system by filtering by the BootPartition property:

PS> gwmi -class Win32_DiskPartition -filter "BootPartition = True"

NumberOfBlocks : 104857600
BootPartition : True
Name : Disk #0, Partition #0
PrimaryPartition : True
Size : 53687091200
Index : 0

Partitions and mapped network drives get registered as logical disks and are usually assigned
a drive letter. If we wanted to get the logical drives, we would have to use the Win32_LogicalDisk
class instances. Here is how to get a list of all drives on the system:

PS> gwmi -class Win32_LogicalDisk

DeviceID : C:
DriveType : 3
ProviderName :

Deshev_940-3C20.fm Page 407 Tuesday, January 22, 2008 6:45 AM

408 CH AP T E R 2 0 ■ M A N A G IN G W IN D O W S W I TH W M I

FreeSpace : 33011838976
Size : 53687087104
VolumeName :

DeviceID : D:
DriveType : 3
ProviderName :
FreeSpace : 144486309888
Size : 266383388672
VolumeName :
...

We can combine all drive information with information about the system BIOS, CPU, and
memory by querying the Win32_BIOS, Win32_Processor, and Win32_PhysicalMemory objects. As
you can see, creating a script that visits a number of computers on the network and extracts
information about their hardware configurations should not be hard to do. We could use the
gathered data for generating reports, detecting malfunctioning devices, and maybe even singling
out computers that need hardware upgrades.

Getting Information About Software
An important regular maintenance task is keeping all our software up to date. Of course, the
most important piece of software is the operating system. We can use WMI to query the state
of installed service packs and updates for all computers on the network and then trigger alarms
when something is not up to date, just like we could for hardware queries.

Operating System Updates
The first thing that we may need to check is the operating system version and its installed service
packs. We can get that from the Win32_OperatingSystem object for the current machine:

PS> gwmi Win32_OperatingSystem | `
select Name,Version,BuildNumber,`
ServicePackMajorVersion,ServicePackMinorVersion | Format-List

Name : Microsoft® Windows Vista™ Ultimate |C:\Windo
 ws|\Device\Harddisk0\Partition1
Version : 6.0.6000
BuildNumber : 6000
ServicePackMajorVersion : 0
ServicePackMinorVersion : 0

Here is how that looks for a Windows XP system running service pack 2:

PS> gwmi Win32_OperatingSystem | `
select Name,Version,BuildNumber,`
ServicePackMajorVersion,ServicePackMinorVersion | Format-List

Deshev_940-3C20.fm Page 408 Tuesday, January 22, 2008 6:45 AM

CH AP T E R 2 0 ■ M A N AG IN G WI N D O W S W I TH W M I 409

Name : Microsoft Windows XP Professional|C:\WINDOWS
 |\Device\Harddisk0\Partition1
Version : 5.1.2600
BuildNumber : 2600
ServicePackMajorVersion : 2
ServicePackMinorVersion : 0

Hot fix updates are also known as quick fix engineering updates. We can get information
about those by getting the Win32_QuickFixEngineering objects on the system. Normally, there
are quite a lot of those, as problems and vulnerabilities are discovered all the time and fixes are
pushed through the Windows Update service. We can use the HotFixID property to get a list
containing only the quick fix IDs:

PS> gwmi Win32_QuickFixEngineering | select HotFixID

HotFixID

{5E5BD655-7AA9-47F9-BB6D-A1D8CE29AC86}
{C7A78F7F-EF32-4477-BAD7-3439EA7571BF}
{375F080F-88E9-4EA1-A177-C0F091546AC8}
{C6F1E87D-F3E1-4874-97EC-F87DAB6D6878}
{1DE969A4-D024-4CC3-AAC8-2B79C2751031}
{BE2BFE6C-42E9-41DC-925D-2B5AA1A78644}
933246
928439
932926
KB905866
KB925902
KB928253
KB929399
...

Installed Programs
Microsoft has done a great job of standardizing the program installation process through their
Windows Installer technology. For quite some time, they have been requiring that any program
that wants to meet the “Designed for Windows” logo requirement must have a Windows Installer–
based installation. Those requirements are aimed at making administration of installed programs
easier. Windows Installer packages define products; products are split into features, and features,
in turn, are split in components. Features are parts of the product that the user may choose to
install or skip during the installation process. Just like many other parts of the operating system, we
can get information about the installed products and features using WMI. That makes the task
of maintaining and upgrading installations of programs on many computers across the network
significantly easier.

We can get a list of installed products on our system by getting all Win32_Product instances.
It is likely that we will get a huge list, so it might be a good idea to use a WQL filter to get just the
products we are interested in. Here is how we can get all products whose names start with
“PowerShell”:

Deshev_940-3C20.fm Page 409 Tuesday, January 22, 2008 6:45 AM

410 CH AP T E R 2 0 ■ M A N A G IN G W IN D O W S W I TH W M I

PS> gwmi Win32_Product -filter "Name LIKE 'PowerShell%'"

IdentifyingNumber : {2863EE03-3DE6-4816-BBFC-5B8A59DCF743}
Name : PowerShell Community Extensions 1.1.1
Vendor : PowerShell Community Extensions Developers
Version : 1.1.1
Caption : PowerShell Community Extensions 1.1.1

I get only an entry about the PowerShell Community Extensions. It is a free product that
contains a set of additional cmdlets, providers, and scripts, which we will discuss in Chapter 21.
You might be wondering why we did not get PowerShell itself. The answer is simple: Windows
PowerShell is not considered a product. It is distributed as an add-on for the operating system,
and for all purposes, we can think of it as a part of the operating system.

■Note Running the code that gets instances of the Win32_Product class may sometimes get you a
Get-WmiObject : Generic failure error on Windows Vista. The error is caused by a known bug in the
Vista WMI implementation and will occur for any query for the Win32_Product objects, whether or not the
client is PowerShell. The bug should be addressed for Windows Vista’s first service pack release.

Many installation programs based on Windows Installer allow a user to choose which
program features to install on the hard drive. Features can be installed or removed later. We
can get all features or all features for a product using WMI, which makes checking if a feature is
installed very easy. Here is how to get the captions and versions for all features of Microsoft
Word that have been installed on the system:

PS> gwmi -class Win32_SoftwareFeature `
-filter "ProductName LIKE 'Microsoft Office Word%'" | `
select Caption,Version

Caption Version
------- -------
GIMME OnDemand Feature. 12.0.4518.1014
 12.0.4518.1014
 12.0.4518.1014
 12.0.4518.1014
Help 12.0.4518.1014
 12.0.4518.1014
 12.0.4518.1014
Bibliography Files 12.0.4518.1014
Document Parts Files 12.0.4518.1014
Word Templates 12.0.4518.1014
 12.0.4518.1014
Quick Formatting Files 12.0.4518.1014
Microsoft Office Word 12.0.4518.1014

Deshev_940-3C20.fm Page 410 Tuesday, January 22, 2008 6:45 AM

CH AP T E R 2 0 ■ M A N AG IN G WI N D O W S W I TH W M I 411

The code uses a simple yet effective trick—a LIKE comparison on the ProductName property.
You can use that approach for easy checks for products whose full names are hard to find or
remember.

The Network Configuration
Network adapters are just another type of hardware with corresponding WMI objects that we
can use to our advantage. To get information about the hardware device, we can query the
Win32_NetworkAdapter objects on our system. Here is how the default view of my VIA Rhine II–
compatible network adapter looks:

PS> gwmi Win32_NetworkAdapter -filter "Name LIKE 'VIA Rhine%'"

ServiceName : FETNDIS
MACAddress : 00:08:A1:93:10:9A
AdapterType : Ethernet 802.3
DeviceID : 4
Name : VIA Rhine II Compatible Fast Ethernet Adapter
NetworkAddresses :
Speed : 100000000

The information is strictly hardware related. You will not see anything related to the
Internet, like an IP address assigned to the adapter. Those settings are available through the
Win32_NetworkAdapterConfiguration objects. Here is the corresponding configuration object
for my network adapter:

PS> gwmi Win32_NetworkAdapterConfiguration `
-filter "Description LIKE 'VIA Rhine%'"

DHCPEnabled : True
IPAddress : {85.11.181.215}
DefaultIPGateway : {85.11.181.1}
DNSDomain : somedomain.net
ServiceName : FETNDIS
Description : VIA Rhine II Compatible Fast Ethernet Adapter
Index : 4

Note that, this time, we are using a filter on the Description property. As you can see, we
get the IP address, the default gateway, and other Internet-related settings.

Generating WMI Code
WMI has been around for quite some time. It has its quirks and difficulties, but it offers huge
benefits to its users. The hardest part about WMI is the ocean of information that surrounds us.
WMI’s greatest strength—being comprehensive and covering all aspects of Windows adminis-
tration—is also the biggest obstacle to people using it. There are too many classes to effectively

Deshev_940-3C20.fm Page 411 Tuesday, January 22, 2008 6:45 AM

412 CH AP T E R 2 0 ■ M A N A G IN G W IN D O W S W I TH W M I

memorize, and their instances have so many properties that it is impossible to learn them all
and start using them by hand. The only solution to this problem is to have some sort of a tool—
either an integrated development environment or a code generator—that can help us in writing
code. A number of free tools, available on the Internet, can enumerate all classes and their
properties and then generate code that will query for object instances and access their properties.
This can help tremendously in starting a new script that uses an unknown object. The only
problem is that those tools do not support PowerShell yet. The best they can do is to generate
VBScript code. Luckily, we can convert the generated code to PowerShell relatively easily. You
do not need to know VBScript to get the general idea of creating the right query. You can then
inspect the properties referenced by the generated code and just use the same properties from
PowerShell.

Scriptomatic
The Scriptomatic tool was the first WMI scripting helper developed by Microsoft. It is hugely
popular and has helped a great number of people. In a nutshell, it is a small utility that lists all
WMI classes for you and generates code that gets all object instances and prints out their prop-
erties for the class you selected. The original version generated only VBScript code, but the
newest version, Scriptomatic 2.0, can now generate code in several different languages: VBScript,
JScript, Perl, and Python. Unfortunately, PowerShell is not available yet, so we will have to convert
the generated code from VBScript by hand. As you will see in a second, that is not hard at all.

■Note You can get Scriptomatic 2.0 from its home on the Microsoft TechNet site at http://
www.microsoft.com/technet/scriptcenter/tools/scripto2.mspx. The tool is distributed as a
self-extracting archive that contains a HTML application (.hta) file. You may get script errors when running
the file if you do not do use elevated privileges on Windows Vista. To run the tool with elevated privileges,
right-click the Internet Explorer icon, and select “Run as administrator” from the context menu. When the
browser window loads, select Open from the File menu (press the Alt key on your keyboard to display the
menu if it is not initially shown), navigate to the folder where you installed Scriptomatic, and open the
ScriptomaticV2.hta file. Make sure you choose All Files as the File Open dialog filter, or you may not see
the HTA file in the target folder. You will be prompted with a security warning dialog; click the Run button, and
you are ready to go.

The Scriptomatic application window allows you to select a WMI class from a drop-down
list. Once you do, the tool will generate code that gets all instances and prints their properties.
You can run the generated code on the spot by clicking the Run button, and you can copy or
save the code to another place for later use.

Let’s now use Scriptomatic to generate a script that gets details about monitor resolution.
We need to select the Win32_DesktopMonitor class from the drop-down, as shown in Figure 20-2.

Deshev_940-3C20.fm Page 412 Tuesday, January 22, 2008 6:45 AM

CH AP T E R 2 0 ■ M A N AG IN G WI N D O W S W I TH W M I 413

Figure 20-2. The Scriptomatic window showing the generated code

Do not run away yet! That is a lot of code, but we only need a small portion of it. The most
important part is the WQL query. We simply need to copy the string with the SELECT statement
and paste it as a query that gets sent to Get-WmiObject. That is all! Here is the result:

PS> gwmi -query "SELECT * FROM Win32_DesktopMonitor"

...
ScreenHeight : 900
ScreenWidth : 1440
...

We can narrow down the results by selecting only the properties we need. Initially, you
might want to glance over the VBScript code and go over the property names, which may help
you stumble upon the ScreenHeight and ScreenWidth properties. All you have to do to get those
from PowerShell is pipe the Get-WmiObject result through select:

Deshev_940-3C20.fm Page 413 Tuesday, January 22, 2008 6:45 AM

414 CH AP T E R 2 0 ■ M A N A G IN G W IN D O W S W I TH W M I

PS> gwmi -query "SELECT * FROM Win32_DesktopMonitor" | `
select ScreenHeight,ScreenWidth

 ScreenHeight ScreenWidth
 ------------ -----------
 900 1440

You may encounter properties that do not get displayed by PowerShell’s default view. One
such example is the Win32_BIOS class. The shell will not display some of its properties like Caption or
CurrentLanguage. Here is the default view that we get:

PS> gwmi Win32_BIOS

SMBIOSBIOSVersion : 0401
Manufacturer : American Megatrends Inc.
Name : BIOS Date: 02/17/06 01:14:37 Ver: 08.00.12
SerialNumber : System Serial Number
Version : DELL - 2000617

Code generated by Scriptomatic uses properties not included in the default view. After we
find out about their names, we can force PowerShell to display them:

PS> gwmi Win32_BIOS | select Caption,CurrentLanguage

Caption CurrentLanguage
------- ---------------
BIOS Date: 02/17/06 01:14:37 Ver... en|US|iso8859-1

Summary
WMI is a set of mature technologies that represent a powerful weapon in every administrator’s
daily fight against network entropy. With the advent of Windows Remote Management, WMI is
becoming even more attractive, as we can use it without having to go through the burden of
reconfiguring firewalls to allow DCOM traffic. If you have not used WMI for real work yet, now may
be the best time to start doing so. Of all WMI-related scripting tools that I have used, PowerShell is
the one that makes using, learning, and mastering WMI the easiest.

Learning WMI can be a long journey. It takes some time to master because of the sheer
number of objects that can be scripted with it. You can get a lot of useful ideas from the Microsoft
Script Center’s script repository available at http://www.microsoft.com/technet/scriptcenter/
scripts/msh/. It contains many sample scripts, most of which use WMI to script an operating
system component. Another place to get ideas is the WMI classes reference that is available at
http://msdn2.microsoft.com/en-us/library/aa394554.aspx. The reference contains full docu-
mentation on all the classes and is the place to look for help when you need to know what a specific
property or method does. Finally, to get the big picture for web-based enterprise management, you
can find the DMTF specifications at http://www.dmtf.org/standards/wbem/. Specifications can
easily get boring, and you can get the essence of the standards from the DMTF tutorial that is
available at http://www.wbemsolutions.com/tutorials/DMTF/.

Deshev_940-3C20.fm Page 414 Tuesday, January 22, 2008 6:45 AM

CH AP T E R 2 0 ■ M A N AG IN G WI N D O W S W I TH W M I 415

Even though WMI is a pretty complex subject and requires some time to fully get your head
around it, PowerShell offers very good support and really makes WMI objects first class citizens.
Now that you do not have to deal with a number of obscure COM objects to get information
from WMI, you can really start using this tool in your daily management tasks. In this chapter,
we have used WMI mostly to query objects for information.

WMI also supports subscribing to specific events so that we can get notified whenever
something interesting happens. Unfortunately, PowerShell does not support subscribing to
those events in its current state. We can still subscribe and handle those events, but we need to
use a free snap-in, PSEventing, which I will demonstrate in Chapter 22.

Deshev_940-3C20.fm Page 415 Tuesday, January 22, 2008 6:45 AM

417

■ ■ ■

C H A P T E R 2 1

PowerShell Community
Extensions

One of the wisest sayings about software development goes like this, “To release is to choose.”
It stems from the idea that if you wait for release until you have a software product with all the
features users might want, your development cycle will be endless; there will always be more
and more ideas, better ways to implement something, a faster algorithm that will make a differ-
ence in some scenarios. You cannot do this forever. Well, you can, but the market will not wait
for you. The product will share Duke Nukem Forever’s destiny—it will remain nothing more
than vaporware. The PowerShell team heeded that lesson very well—there are a ton of useful
commands and enhancements that never made it for the version 1.0 release. The team decided
that what we have now is good enough and will provide a lot of value to users, even without
some of the bells and whistles they could have added.

Now, the community has to step in. PowerShell is very extensible, and we can easily imple-
ment any missing utility as an extra script or as a snap-in that contains new cmdlets. This is
how the PowerShell Community Extensions project got started. It tries to collect all the useful
cmdlets, scripts, functions, and filters that members of the community are interested in. It
really is the perfect companion for any new PowerShell installation. Whenever you find that
something is missing in the default install, checking to see if the PowerShell Community Exten-
sions project has it already is worth the time. Chances are, you’ll find what you’re looking for.

The best part about the project is that every piece of code is released under an open source
license. Anyone can get the code and use it to learn how the utilities are implemented. Tinkering
with the code is one of the best ways to learn new tricks. We learn not only how the code at
hand works but about new services that the shell exposes. We can use those in a different context to
get new ideas for doing our jobs easier.

Installation and Configuration
Enough praise—let’s get started! The PowerShell Community Extensions (PSCX) project is
hosted on CodePlex, Microsoft’s open source project hosting web site. The project page is
located at http://www.codeplex.com/PowerShellCX. Download the latest release, and install it.
The installer, like any normal installation program, will require elevated privileges. The only
special thing you have to decide at the time of installation is whether you would like to install
the default profile script for the project. It is best if you do so; the profile script takes care to
add the PSCX snap-in to your shell session every time that you start your shell. In addition,

Deshev_940-3C21.fm Page 417 Wednesday, January 23, 2008 7:41 AM

418 CH AP T E R 2 1 ■ P O W E R SH E L L C OM M U N I TY E X TE N S I ON S

it defines several important functions and variables. Do not worry about losing your original
profile; it will be backed up to a file next to the new profile script, and you can easily include or
dot source your original profile script in the new one.

Tab Expansion
PSCX comes with an improved version of the default tab expansion mechanism. In fact, it
completely replaces the default tab expansion. You can refer to Chapter 11 for details on changing
the way the shell expands strings when the user presses the Tab key. After installing the snap-in, we
have a completely new TabExpansion function:

PS> (Get-Command TabExpansion).Definition
param($line, $lastWord) Get-TabExpansion $line $lastWord

The original PowerShell-supplied function is quite wordy, while it seems that PSCX delegates
all expansions to the Get-TabExpansion cmdlet. The cmdlet can be called directly from code.
We need to only set the $line and $lastWord parameters:

PS>Get-TabExpansion Win32_Op Win32_Op
Win32_OperatingSystem
Win32_OperatingSystemAutochkSetting
Win32_OperatingSystemQFE

From the preceding example, you can see one of the additions to the tab expansion mech-
anism—PowerShell can now complete WMI class names. Another new thing is completions for
.NET type names. Why do we really need a cmdlet anyway, and what good is calling it on the
command line? The answer lies in a typical extensibility scenario: suppose we have extended
the default tab expansion mechanism by defining our own TabExpansion function, and we want
both expansions to work according to our scheme and to the one provided by PSCX. The best
way to do that is to combine our expansions with the ones returned by Get-TabExpansion. If you
need to customize your tab expansion and need to call that cmdlet from your own code, please
refer to Chapter 11.

Editing Configuration Files
UNIX shells have long since relied on the $EDITOR global variable to determine what is our
preferred text editor so that they use it when we need to edit a file. With PSCX, we can now have
this feature in PowerShell, too. If you are using the default PSCX profile script, you should have
the Edit-File function available. It will use the currently configured editor to open the file it
has been given. You can pass the file name as a parameter or pipe it in. In addition, the function
has been aliased to e, so that we can open a file for editing in a blink:

PS> e test.txt
PS> $PscxTextEditorPreference
Notepad
PS> $PscxTextEditorPreference = 'C:\Program Files\NotepadPlusPlus\notep
ad++.exe'
PS> e test.txt
PS>

Deshev_940-3C21.fm Page 418 Wednesday, January 23, 2008 7:41 AM

C HA P TE R 2 1 ■ PO W E R S HE L L CO M M U N IT Y E X T E N S IO N S 419

The default editor is notepad.exe. You can change it by setting the $PscxTextEditorPreference
variable, preferably in your profile script. In the preceding example, I set it to my current favorite
text editor—Notepad++.

PSCX recognizes the need to easily edit our profile scripts and provides four helper functions
that feed those files to our favorite text editor:

• Edit-GlobalHostProfile: Edits the profile script for the current host application globally
for all users

• Edit-GlobalProfile: Edits the global profile script that affects all users and all host
applications

• Edit-HostProfile: Edits the current host profile script for the current user

• Edit-Profile: Edits the current user’s all-hosts profile script

For a detailed explanation on shell hosts and the various ways you can configure your shell
session through a shell profile script, refer to Chapter 11. The preceding four functions can be
considered as a shortcut to performing the customizations that Chapter 11 describes.

Getting Help
How do we know what commands are available once we have installed PSCX? The “I have
installed PSCX, now what?” problem is not uncommon, so several helper functions are available to
point us in the right direction by showing a list of commands.

Probably the most important function here is Get-PscxCmdlet. It returns a (long) list of all
the cmdlets that we have just installed:

PS> Get-PscxCmdlet

CommandType Name Definition
----------- ---- ----------
Cmdlet Get-ADObject Get-ADObject [-Domain <...
Cmdlet Resolve-Assembly Resolve-Assembly [-Name...
Cmdlet Test-Assembly Test-Assembly [-Path] <...
Cmdlet ConvertFrom-Base64 ConvertFrom-Base64 [-Ba...
Cmdlet ConvertTo-Base64 ConvertTo-Base64 [-Path...
...

The list is quite long—59 cmdlets in total for the version 1.1.1 release. I had to convert
them to a comma-separated value list and use Microsoft Excel to keep track of them when I
started writing this chapter. Here is how you can view the list in Excel (the code assumes that
you have Microsoft Excel installed and it is associated with .csv files):

PS> Get-PscxCmdlet | Export-Csv cmdlets.csv
PS> Invoke-Item cmdlets.csv
PS>

Having a list of the cmdlets is good, but we also need a list of aliases that we can use. We do
not want to type the entire Set-FileTime command when a simple touch command will do just
fine, right? We can get the aliases using the Get-PscxAlias function:

Deshev_940-3C21.fm Page 419 Wednesday, January 23, 2008 7:41 AM

420 CH AP T E R 2 1 ■ P O W E R SH E L L C OM M U N I TY E X TE N S I ON S

PS> Get-PscxAlias

CommandType Name Definition
----------- ---- ----------
Alias ?: Invoke-Ternary
Alias ?? Invoke-NullCoalescing
Alias adl Add-DirectoryLength
Alias apropos Get-HelpMatch
Alias apv Add-PathVariable
...

Remember the $PscxTextEditorPreference variable you saw previously? There are many
cmdlets that rely on similar preference variables. In addition, PSCX defines several variables
that contain information about the environment. To get all the special variables, we need to
call the Get-PscxVariable function:

PS> Get-PscxVariable

Name Value
---- -----
__PscxCdBackwardStack {C:\}
__PscxCdForwardStack {}
__PscxDebugBreakpointsEnabled True
__PscxDebugSkipCount 0
__PscxProfileRanOnce
IsAdmin False
NTAccount NULL\Hristo
NTIdentity System.Security.Principal.WindowsIde...
NTPrincipal System.Security.Principal.WindowsPri...
ProfileDir C:\Users\Hristo\Documents\WindowsPow...
...

The variables contain a lot of useful information, and it is best if you go through the list and
try to spot the ones that can be of use. Take the $IsAdmin variable for example. We had to do
some crazy .NET programming in Chapter 11 to see if the current user is a computer adminis-
trator. We do not need to do that once we have PSCX installed. There is one important caveat
here: do not touch variables starting with double underscores. Those variables are used inter-
nally by the PSCX cmdlets and functions.

The last of the information functions is Get-PscxDrive. It will list the drives pointing to
locations that are served from item providers implemented by PSCX. Here are the default
drives that PSCX registers for the global assembly cache and Internet Explorer’s feed store:

PS> Get-PscxDrive

Name Provider Root CurrentLo
 cation
---- -------- ---- ---------
Feed FeedStore
Gac AssemblyCache Gac

Deshev_940-3C21.fm Page 420 Wednesday, January 23, 2008 7:41 AM

C HA P TE R 2 1 ■ PO W E R S HE L L CO M M U N IT Y E X T E N S IO N S 421

We will get to describing each of the PSCX providers later in this chapter. For further
details on item providers, please refer to Chapter 7.

Maybe the most powerful tool in learning both PSCX and PowerShell is the Get-HelpMatch
function. Aliased to apropos, it will search for occurrences of a string or a regular expression in
all help topics. Figure 21-1 shows it in action, looking for help on New-Object. Help searches are
usually slow, and the function shows a nice progress bar as it traverses the help topics.

Figure 21-1. Get-HelpMatch searching for help on New-Object

File System Utilities
Working with files and folders usually occupies most of our time in the shell. Naturally, PSCX
provides several enhancements that make that experience more enjoyable.

Navigation Helpers
The navigation support in PowerShell is somewhat poor when compared to the support found
in UNIX shells. I, as a user, have long been annoyed by the lack of support for the cd - command,
the fastest way to return to the previous folder you were visiting. People used to cmd.exe’s handling
of the cd command may be used to cd.. (no space between cd and ..) and may be ticked by the
fact that it does not work in PowerShell. PSCX solves these problems by creating its own cd
function that replaces the original version. The new function keeps track of the folders you visit
and provides some other interesting features.

You get a history of the folders you have visited, and you can navigate both back and forward
in that history using the – and + symbols as shortcuts. Here is an example:

PS> cd \users\hristo
C:\users\Hristo
PS> cd ..
C:\Users
PS> cd -
C:\users\Hristo
PS> cd +
C:\Users

Deshev_940-3C21.fm Page 421 Wednesday, January 23, 2008 7:41 AM

422 CH AP T E R 2 1 ■ P O W E R SH E L L C OM M U N I TY E X TE N S I ON S

You can also safely omit the space after the cd command:

PS> cd\
C:\
PS> cd users\hristo
C:\users\Hristo
PS> cd..
C:\Users
PS> cd-
C:\users\Hristo
PS> cd+
C:\Users

Note that there are no spaces in the cd\, cd-, cd+, and cd.. commands.

NTFS Helpers
Ever since the release of Windows 2000, the NTFS file system has supported two special types
of file system entries: hard links and directory junctions. Hard links represent a way to associate
more than one file system entry with the same block of data on disk. The entries look like different
files and modifying the file contents through one of the entries affects all of them. Deleting an entry
deletes the file data if and only if the deleted entry is the last one that points to the data. If there
are more entries, the data will remain intact and will still be accessible through them. PSCX
provides support for creating hard links through the New-HardLink cmdlet. Here is how to use it:

PS> New-Hardlink test-link.txt test.txt

Mode LastWriteTime Length Name
---- ------------- ------ ----
-ar-- 7/7/2007 11:33 PM 4 test-link.txt

PS> dir

 Directory: Microsoft.PowerShell.Core\FileSystem::Z:\22 - PowerShel
 l Community Extensions\TestFolder

Mode LastWriteTime Length Name
---- ------------- ------ ----
-ar-- 7/7/2007 11:33 PM 4 test-link.txt
-ar-- 7/7/2007 11:33 PM 4 test.txt

The test-link.txt directory entry points to the data in test.txt. To get rid of the entry,
just delete it. Do not worry; the original file will not be affected.

One big drawback of hard links is that you cannot tell if a file is the original directory entry,
so most file systems, NTFS included, do not allow hard-linking directories; there is no way to
detect a circular reference that would cause an infinite loop. That is why NTFS provides junction

Deshev_940-3C21.fm Page 422 Wednesday, January 23, 2008 7:41 AM

C HA P TE R 2 1 ■ PO W E R S HE L L CO M M U N IT Y E X T E N S IO N S 423

points or directory junctions. Junctions are similar to hard links but work for directories only.
They are marked in a special way, so we always know which one is the original. We can create
a junction using the New-Junction cmdlet:

PS> mkdir folder1
...
PS> New-Junction folder2 folder1

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 12/17/2007 10:15 PM <JUNCTION> folder2 [Z:\21 - PowerShell
 Community Extensions\folder1
]

The cmdlet returns the newly created junction. It is not safe to delete a junction, because some
programs delete folders recursively, and that may cause the deletion of the original files instead of
the junction itself. To get rid of our junction, we have to use the Remove-ReparsePoint cmdlet:

PS> Remove-ReparsePoint folder2
PS> dir

 Directory: Microsoft.PowerShell.Core\FileSystem::Z:\22 - PowerShel
 l Community Extensions\TestFolder

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 11/7/2007 2:26 AM <DIR> folder1

Something is fishy here; we are creating a junction and deleting a reparse point! There is
no need to have a dedicated Remove-Junction cmdlet, as directory junctions are just a type of
reparse points, and we do not need additional functionality to delete them.

■Note Reparse points offer a convenient way to expose various functionality with a familiar file and folder
I/O interface. A reparse point is a special file system object that associates a file system entry with some code
that performs different operations on the stream of data while pretending to be reading or writing it to disk. In
the case of a junction, the reparse point contains the directory redirection code. In short, a junction appears
as a normal folder, but it redirects all reads and writes to the real folder when accessed.

Windows Vista introduces symlink support to the NTFS file system. Symlinks or symbolic
links do not have the limitations of hard links and junctions and can link to both files and
folders. They can even link to locations across the network. We can create a symlink using the
New-Symlink cmdlet. Please note that creating a symlink requires privilege elevation. Here is an
example that again links folder2 to folder1:

Deshev_940-3C21.fm Page 423 Wednesday, January 23, 2008 7:41 AM

424 CH AP T E R 2 1 ■ P O W E R SH E L L C OM M U N I TY E X TE N S I ON S

PS> New-Symlink folder2 folder1

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 11/7/2007 2:34 AM <SYMLINKD> folder2 [C:\PowerShell\symlink\folder1]

Here is how we delete a symlink:

PS> Remove-ReparsePoint folder2
PS>

Note that we need to call Remove-ReparsePoint again. I believe you know why already—
symlinks are implemented with reparse points too.

Compressing and Archiving Files
Surprisingly, PowerShell does not include any support for creating or reading from compressed
files and archives. I can imagine some nice providers that will allow you to mount an archive as
a separate drive and manipulate files as if they were not compressed at all, but c’est la vie. Luckily,
the PSCX guys are here to save the day.

The most important cmdlet that we need to learn here is Write-Zip. At minimum, it takes
a source folder and a destination path. Here is an example:

PS> Write-Zip C:\PowerShell PowerShell.zip

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 11/7/2007 2:45 AM 1089671 PowerShell.zip

The cmdlet puts up a nice progress bar while it is doing its job, as shown in Figure 21-2.

Figure 21-2. Creating a ZIP archive using the Write-Zip cmdlet

The ZIP archive format is not the only option that we have for archives. The other supported
format is Tar. People with UNIX experience will recognize it, since it is the prevalent format in

Deshev_940-3C21.fm Page 424 Wednesday, January 23, 2008 7:41 AM

C HA P TE R 2 1 ■ PO W E R S HE L L CO M M U N IT Y E X T E N S IO N S 425

that world. We can create a Tar archive using the Write-Tar cmdlet. We can call it in absolutely
the same way as we did with Write-Zip. Here is the code that archives our folder in a Tar file.

PS> Write-Tar C:\PowerShell PowerShell.tar

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 11/7/2007 2:51 AM 4321280 PowerShell.tar

You might notice that the Tar archive is significantly larger in size than the ZIP one. That is
so because Tar archives are not compressed. It is a custom in the UNIX world to separate the
archive format from the compression algorithm. PSCX offers two compression-only cmdlets:
Write-GZip and Write-BZip2. They can compress one or many files using the two popular
compression algorithms gzip and bzip2, respectively. This is how we can compress our archive
in the two formats:

PS> Write-GZip PowerShell.tar PowerShell.tar.gz

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 11/7/2007 2:54 AM 2159677 PowerShell.tar.gz

PS> Write-BZip2 PowerShell.tar PowerShell.tar.bz2

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 11/7/2007 2:55 AM 2180229 PowerShell.tar.bz2

Let me stress again that the gzip and bzip2 algorithms cannot archive many files. We need
to create a Tar archive first and then put it up for compression.

■Note Unfortunately, not everything is perfect on the compression front. We lack the decompression part
of the puzzle. There is no way to look inside or decompress our archive using PowerShell. For the time being,
we will have to resort to using external programs.

Network Utilities
The network part of our automation tasks has not been forgotten by the PSCX developers. We
have pretty good support for the Windows network, especially when it comes to working with
Active Directory. If we are in a Windows network domain, we can ask the Active Directory for
our DHCP server or the domain controller. We can do that with the Get-DhcpServer and
Get-DomainController cmdlets, respectively. Here is how we can get that information:

Deshev_940-3C21.fm Page 425 Wednesday, January 23, 2008 7:41 AM

426 CH AP T E R 2 1 ■ P O W E R SH E L L C OM M U N I TY E X TE N S I ON S

PS> Get-DhcpServer

ServerName Address
---------- -------
win2k3-test.TEST.local 192.168.0.1

PS> Get-DomainController

ServerName : WIN2K3-TEST
DnsHostName : win2k3-test.TEST.local
Site : Default-First-Site
Domain : TEST.local
DN : CN=WIN2K3-TEST,OU=Domain Controllers,DC=TEST,DC=local
GlobalCatalog : True

Note that the Get-DhcpServer and Get-DomainController cmdlets will fail if your machine
is not a member of a Windows domain.

PSCX also offers some small but handy network-related utilities that we can use to ping
machines on the network or resolve DNS names. We can use the built-in Windows ping utility,
but we would have to parse the results using regular expression. Why do that if we can have our
own object-oriented ping? Here is how to use the ping utility and query its results:

PS> $pingResults = ping google.com
Pinging google.com with 32 bytes of data:
 Reply from 72.14.207.99 bytes=32 time=149ms TTL=238
 Reply from 72.14.207.99 bytes=32 time=141ms TTL=238
 Reply from 72.14.207.99 bytes=32 time=142ms TTL=238
 Reply from 72.14.207.99 bytes=32 time=144ms TTL=238

PS> $pingResults.MinimumTime
141
PS> $pingResults.MaximumTime
149
PS> $pingResults.Sent
4
PS> $pingResults.Received
4
PS> $pingResults.Loss
0

The ping command you see in the preceding code is not the Windows ping tool. This is an
alias for the PSCX Ping-Host cmdlet. It returns a PingHostStatistics object that holds the result of
our query.

We can do a similar thing when resolving DNS names to IP addresses by using the
Resolve-Host cmdlet. Here is how to get some of the Google IP addresses:

Deshev_940-3C21.fm Page 426 Wednesday, January 23, 2008 7:41 AM

C HA P TE R 2 1 ■ PO W E R S HE L L CO M M U N IT Y E X T E N S IO N S 427

PS> $result = Resolve-Host google.com
PS> $result.AddressList

IPAddressToString : 64.233.187.99
Address : 1673259328
AddressFamily : InterNetwork
ScopeId :
IsIPv6Multicast : False
IsIPv6LinkLocal : False
IsIPv6SiteLocal : False

IPAddressToString : 72.14.207.99
Address : 1674513992
AddressFamily : InterNetwork
ScopeId :
IsIPv6Multicast : False
IsIPv6LinkLocal : False
IsIPv6SiteLocal : False

IPAddressToString : 64.233.167.99
Address : 1671948608
AddressFamily : InterNetwork
ScopeId :
IsIPv6Multicast : False
IsIPv6LinkLocal : False
IsIPv6SiteLocal : False

PSCX also ships a script that can download web page content from a HTTP server—Get-Url.
It is very easy to use; it needs only a URL. Here is how to get the contents of the Yahoo! start page:

PS> Get-Url http://www.yahoo.com
<html>
<head>
<title>Yahoo!</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

I would still recommend using the Get-Url.ps1 script that we created in Chapter 18. In
addition to getting a string representation, our script can save the contents to a file, provide
custom HTTP header values, and work with proxy servers and HTTP authentication.

Executing Processes and Commands
You might remember our little problem from Chapter 14: with all the built-in process-related
cmdlets that PowerShell has, getting a reference to the process you just started is still quite
hard. We had two solutions: look for the process using its expected window title or process
name shortly after you start it or use a piece of .NET code that starts the process like this:

Deshev_940-3C21.fm Page 427 Wednesday, January 23, 2008 7:41 AM

428 CH AP T E R 2 1 ■ P O W E R SH E L L C OM M U N I TY E X TE N S I ON S

PS C:\> $notepad = [Diagnostics.Process]::Start("notepad.exe")
PS C:\> $notepad

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 51 3 1860 7188 42 0.13 2816 notepad

The preceding solution works fine with the minor inconvenience that it is hard to pass
command-line parameters to the program you want to start. PSCX solves that exact problem
by offering a new cmdlet, Start-Process. The cmdlet returns the process object it just created.
It does much more too. For example, it can spawn a process under different user credentials:

PS> $credentials = Get-Credential

cmdlet Get-Credential at command pipeline position 1
Supply values for the following parameters:
Credential
PS> $notepad = Start-Process -Path notepad.exe -Credential $credentials

The new process spawned by the code will run under the user credentials you supplied in
the user name/password dialog box that Get-Credential pops open for the user. Here is how
we can pass a command-line parameter using the Arguments parameter:

PS> $notepad = Start-Process -path notepad -arguments "C:\PowerShell\te
st.txt"
PS> $notepad | Stop-Process
PS> $notepad.HasExited
True

The preceding code opens the C:\PowerShell\test.txt file in Notepad and then kills the
process. After that, it confirms the process has really terminated by checking the HasExited
property.

Another nice feature that the cmdlet offers is being able to start a new process using a
specific priority. We can do that by setting the Priority parameter to something like Idle,
BelowNormal, Normal, AboveNormal, High, or RealTime. Here is a snippet that starts two Notepad
processes with different priorities:

PS> $notepad1 = Start-Process notepad
PS> $notepad2 = Start-Process notepad -Priority BelowNormal
PS> $notepad1.BasePriority
8
PS> $notepad2.BasePriority
6
PS>

We check the BasePriority for both processes; 6 is the code for BelowNormal process priority
and 8 for Normal.

The last interesting thing I should mention is that we can start a windowed process with its
main window being hidden, so that the process runs in the background. This can be useful if

Deshev_940-3C21.fm Page 428 Wednesday, January 23, 2008 7:41 AM

C HA P TE R 2 1 ■ PO W E R S HE L L CO M M U N IT Y E X T E N S IO N S 429

you want to prevent a process from stealing focus and distracting the user. Of course, you have
to be careful with that, as the process may get hung in the background and there will be no way
to know that. Here is the code that will start a hidden Notepad process:

PS> $notepad = Start-Process Notepad -WindowStyle Hidden
PS> $notepad.CloseMainWindow()
False
PS> $notepad.HasExited
False
PS> $notepad | Stop-Process
PS> $notepad.HasExited
True

The preceding code does not display anything, but it really creates a new process. The new
process is visible in the Windows Task Manager, and we can also get it using the Get-Process
cmdlet. Also note that the code that tries to close the main window, as a graceful way to stop
the process, does not work when the main window is initially hidden, and the process keeps
running. That leaves killing the process as the only option to exit it.

Let’s get back to starting processes with different credentials. You might agree that even
though Start-Process makes doing so easier, it is still not good enough. We need a quicker way
to run a program or a shell command with elevated privileges. PSCX solves that by providing an
elevate function that wraps a call to Start-Process with a friendlier interface. It accepts a shell
command or a program name. In the former case, it spawns a new shell with elevated privileges to
execute the command. In the latter one, it just starts the program with elevated privileges.
Remember that I mentioned that only administrators with elevated privileges could create
symlinks on Windows Vista? First, let’s see what happens when we try that when running
under normal privileges:

PS> New-Symlink d users
New-Symlink : A required privilege is not held by the client. (Excepti
on from HRESULT: 0x80070522)
At line:1 char:12
+ New-Symlink <<<< d users

The error message says it all—no permissions! Let’s now use elevate to fix that:

PS> elevate New-Symlink d users

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 0 0 224 60 2 0.00 3064 powershell

The function returns the Process object for the newly spawned shell, so that we can kill it
if the command takes too long. The new shell now successfully executes the command:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 11/7/2007 8:53 PM <SYMLINKD> d [C:\users]

Deshev_940-3C21.fm Page 429 Wednesday, January 23, 2008 7:41 AM

430 CH AP T E R 2 1 ■ P O W E R SH E L L C OM M U N I TY E X TE N S I ON S

XML Tools
PowerShell offers really great XML support through its type adapters, but there is always room
for improvement. One such example is pretty printing. Quite often, we get XML that is so horribly
formatted that it is close to being unreadable. For example, here is how a snippet of the XHTML
(HTML expressed as valid XML) code taken from the W3C looks:

PS> type unformatted.xml
<div class="navBlock">
<h2 class="spot-head">W3C Technical Plenary</h2>
<div class="spot-image">

<img width="120" height="75" alt="BEA logo"
src="/2007/11/TPAC/bea.png" />
</div>

<div class="spot-image">

<img width="120" height="63"
alt="Cisco logo" src="/2007/11/Cisco-logo.png" />
</div>
</div>

We can clean this up using the PSCX Format-Xml cmdlet. It works by being given a path to
the XML file and it outputs it to the console. Here is how we can use it to format the preceding
snippet:

PS> Format-Xml unformatted.xml
<div class="navBlock">
 <h2 class="spot-head">W3C Technical Plenary</h2>
 <div class="spot-image">

 <img width="120" height="75" alt="BEA logo" src="/2007/11/TPAC/b
ea.png" />

 </div>
 <div class="spot-image">

 <img width="120" height="63" alt="Cisco logo" src="/2007/11/Cisc
o-logo.png" />

 </div>
</div>

By default, the cmdlet uses two spaces per indentation level. You can override that by
providing the –Indent parameter; it accepts a string that will be used instead of the two spaces.
If you want to use tabs, pass the `t string:

Deshev_940-3C21.fm Page 430 Wednesday, January 23, 2008 7:41 AM

C HA P TE R 2 1 ■ PO W E R S HE L L CO M M U N IT Y E X T E N S IO N S 431

PS> Format-Xml unformatted.xml -Indent `t > formatted.xml
PS> type formatted.xml
<div class="navBlock">
 <h2 class="spot-head">W3C Technical Plenary</h2>
 <div class="spot-image">

 <img width="120" height="75" alt="BEA logo" src
="/2007/11/TPAC/bea.
png" />

 </div>
 <div class="spot-image">

 <img width="120" height="63" alt="Cisco logo" s
rc="/2007/11/Cisco-l
ogo.png" />

 </div>
</div>

The preceding example uses the standard text redirection mechanism to save the formatted
XML to another file.

The built-in type adapters are real time savers in most situations, but sometimes, they go
too far. There are occasions where we can use XML-based technologies as an easier way to perform
a task. Such examples are XML validation, extracting data using XPath, or transforming a docu-
ment using XSLT. There is no need to shy away from technologies like DTD and XML Schema
for validation, XPath for selecting elements, and XSLT for transforming documents into something
else, especially if you already have experience with those technologies. Starting with validation,
PSCX offers a Test-Xml cmdlet. At minimum, it can validate an XML file to see if it’s well formed.
Here is how to do that for a small document:

PS> type message.xml
<?xml version="1.0"?>
<note
 xmlns="http://www.test.com"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 >
 <to>Mike</to>
 <from>Jim</from>
 <heading>Reminder</heading>
 <body>Meeting @ 6 PM tomorrow!</body>
</note>
PS> Test-Xml message.xml
True

As you can see, the cmdlet returns $true if everything is fine or $false otherwise. We can
now use an XML schema to validate the message file. Here is the sample schema:

Deshev_940-3C21.fm Page 431 Wednesday, January 23, 2008 7:41 AM

432 CH AP T E R 2 1 ■ P O W E R SH E L L C OM M U N I TY E X TE N S I ON S

PS> type message.xsd
<?xml version="1.0"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.test.com"
 xmlns="http://www.test.com"
 elementFormDefault="qualified">
 <xs:element name="note">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="to" type="xs:string"/>
 <xs:element name="from" type="xs:string"/>
 <xs:element name="heading" type="xs:string"/>
 <xs:element name="body" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

The schema requires the document to have four elements containing strings: to, from,
heading, and body. Let’s now add an extra element that should not be there and see how we
can validate the document using the schema:

PS> type message.xml
<?xml version="1.0"?>
<note
 xmlns="http://www.test.com"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 >
 <to>Mike</to>
 <from>Jim</from>
 <heading>Reminder</heading>
 <body>Meeting @ 6 PM tomorrow!</body>
 <illegal id="1">element should not be here</illegal>
 <illegal id="2">element2 should not be here</illegal>
</note>
PS> Test-Xml message.xml -SchemaPath message.xsd -Verbose
VERBOSE: Test-Xml processing path 'Z:\22 - PowerShell Community
Extensions\message.xml'
VERBOSE: Error: The element 'note' in namespace 'http://www.test.com'
has invalid child element 'illegal' in namespace
'http://www.test.com'.
False

We passed the schema in the -SchemaPath parameter. Additionally, we used the –Verbose
parameter to get the exact error message. If we had not done that, we would have gotten only
the $false result.

Deshev_940-3C21.fm Page 432 Wednesday, January 23, 2008 7:41 AM

C HA P TE R 2 1 ■ PO W E R S HE L L CO M M U N IT Y E X T E N S IO N S 433

Navigating and modifying an XML document using the property-based syntax is pretty
quick, but sometimes we may need the full power of XPath to select a node according to some
criteria. Sure, we can loop over nodes and traverse them recursively until we find the right one,
but quite often, XPath allows us to write a small query that will do the job nicely. PSCX makes
that easy by providing a Select-Xml cmdlet. Let’s use our previous example to illustrate how to
use XPath. The example is an extra special case, because it uses XML namespaces—our note
element contents are in the namespace with the URI of http://www.test.com. To make XPath
work, we need to define an XML namespace to tag prefix mapping and use that in our XPath
expression. Here is how we can do that to select the <illegal> element that has an id attribute
of 2:

PS> Select-Xml -Path message.xml -XPath "//test:illegal[@id=2]" `
-Namespace "test=http://www.test.com"

Name NodeType OuterXml
---- -------- --------
illegal Element <illegal id="2" xmlns="http:
 //www.test.com">element2 sho
 uld not be here</illegal>

The Namespace parameter sets up the tag prefix to namespace mapping. We are using the
test prefix. The XPath expression now becomes //test:illegal[@id=2].

■Note Without pretending in any way to teach XPath here, I want to quickly explain that the // part means
that we want to match an <illegal> element at an arbitrary depth in the document. The [@id=2] expression
means that we are interested in elements that have an id attribute that equals 2. To get a quick and easy
tutorial on XPath, you can visit the one on the W3Schools site at http://www.w3schools.com/xpath/.

Selecting an element without XPath would have to involve looping and manually checking
attribute values:

PS> $doc = [xml] (Get-Content message.xml)
PS> $doc.note.illegal | where { $_.id -eq 2 }

id #text
-- -----
2 element2 should not be here

This code is more complex and less powerful than the previous XPath expression. The where
part assumes that all <illegal> elements will be direct children of the <note> element. The
XPath version would have returned all elements, even if they were nested deeper.

Finally, we are often tasked with taking an XML document and converting it into some-
thing else—another XML document (in a different format), a text report, or a richer HTML-
based representation of the data. We can loop through the document elements and generate
the resulting document, but again, that is not a very effective or powerful solution. PSCX offers
a Convert-Xml cmdlet that allows us to use an XSLT transformation. XSLT transformations are

Deshev_940-3C21.fm Page 433 Wednesday, January 23, 2008 7:41 AM

434 CH AP T E R 2 1 ■ P O W E R SH E L L C OM M U N I TY E X TE N S I ON S

a declarative way to describe a set of templates that will be applied to a set of XML elements to
generate another XML document.

■Note Many books have been written about XSLT, and teaching it is outside the scope of this book. For
now, just have in mind that XSLT is a really effective way to manipulate XML, and learning it may be worth the
time. For a good tutorial and an excellent starting point for learning XSLT, you can refer to the W3Schools site
again; the XSLT tutorial is available at http://www.w3schools.com/xsl/.

To show our cmdlet in action, suppose we are trying to generate a red paragraph for every
<illegal> element that we have in our message XML document. Here is our XSLT transforma-
tion file:

PS> type message.xslt
<?xml version="1.0"?>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:test="http://www.test.com">
<xsl:template match="/">
 <html>
 <head>
 <title>Illegal elements</title>
 </head>
 <body>
 <xsl:for-each select="//test:illegal">
 <p style="color: red">
 <xsl:value-of select="."/>
 </p>
 </xsl:for-each>
 </body>
 </html>
</xsl:template>

</xsl:stylesheet>

The real action happens in the <xsl:for-each> element—it selects all <illegal> elements
in the documents and generates a paragraph element with a red font color. Again, note that we
have to handle XML namespaces in a special way: we declare the test namespace prefix with
the xmlns:test="http://www.test.com" attribute and then use the prefix in the XPath expres-
sion. Finally, let’s see the transform in action:

PS> Convert-Xml -path message.xml -XsltPath message.xslt
<html xmlns:test="http://www.test.com">
 <head>
 <title>Illegal elements</title>
 </head>

Deshev_940-3C21.fm Page 434 Wednesday, January 23, 2008 7:41 AM

C HA P TE R 2 1 ■ PO W E R S HE L L CO M M U N IT Y E X T E N S IO N S 435

 <body>
 <p style="color: red">element should not be here</p>
 <p style="color: red">element2 should not be here</p>
 </body>
</html>

Working with Image Files
With the advent of digital photography, everyone has become quite skilled at working with
image files. Everyone seems to have a vast collection of photos, and organizing those can easily
get out of hand. We need tools to validate that an image’s format, resolution, or dimensions
comply with our criteria. We can easily do that with one of the freely available desktop programs;
they all offer a nice graphical user interface that shows us how to verify image files in an intuitive
way. Here, we hit the problem—those nice interfaces are not scriptable at all. We cannot use
them for collections of tens or even hundreds of images. We can use external console programs
that have been specifically designed with scriptability in mind to get the job done here. The first
that comes to mind is ImageMagick: it is the Swiss Army knife of image manipulation utilities and
can resize, resample, or convert images between formats, as well as add all sorts of effects like
text, titles, rounded corners, drop shadows, and much more. PSCX recognizes the need for
such a tool that is deeply integrated with .NET and PowerShell and includes several cmdlets
that can help us with our basic image manipulation needs. At the time of this writing, we can
read information about images, convert images from one format to another, and resize images.

The first thing that we need is the ability to read images from files into .NET objects. We
can do this with the Import-Bitmap cmdlet. It accepts a file name or a wildcard and returns one
or many System.Drawing.Bitmap objects. The cmdlet honors the tradition of using standard
.NET objects where available. Let’s now see how we can get some information about a screen-
shot we have in the current folder:

PS> Import-Bitmap screenshot.tif

Tag :
PhysicalDimension : {Width=1119, Height=828}
Size : {Width=1119, Height=828}
Width : 1119
Height : 828
HorizontalResolution : 96
VerticalResolution : 96
Flags : 77840
RawFormat : [ImageFormat: b96b3cb1-0728-11d3-9d7b-0000f81ef
 32e]
PixelFormat : Format24bppRgb
Palette : System.Drawing.Imaging.ColorPalette
FrameDimensionsList : {7462dc86-6180-4c7e-8e3f-ee7333a7a483}
PropertyIdList : {254, 256, 257, 258...}
PropertyItems : {254, 256, 257, 258...}

Deshev_940-3C21.fm Page 435 Wednesday, January 23, 2008 7:41 AM

436 CH AP T E R 2 1 ■ P O W E R SH E L L C OM M U N I TY E X TE N S I ON S

You can see the image has a horizontal and vertical resolution of 96 pixels per inch, a width
of 1119 pixels, and height of 828 pixels. The pixel format uses 24 bits per pixel: 8 bits for each of
the red, green, and blue color components. The PropertyIdList and PropertyItems properties
look interesting; they hold the exchangeable image file format (EXIF) metadata, but, unfortu-
nately, .NET and PowerShell do not offer good support for reading that data yet.

Now that we are able to read various pieces of data from images, we can use the full power
of the script language and its pipelines to craft some serious commands. For example, I have to
use a special program to capture screenshots for this book. Those screenshots must have a
150 pixels-per-inch resolution and be saved in the TIFF image format. I used to have a problem
overcoming my existing habits of taking screenshots using the Alt+Print Screen shortcut key,
which produces files having a 96 pixels-per-inch resolution. Until I was able to eradicate my
habit, I had to run checks for all TIFF files that told me if I had a bad screenshot somewhere.
Here is how I used PowerShell to help me through this:

PS> $tifs = dir *.tif
PS> $tifs | where { (Import-Bitmap $_).HorizontalResolution -ne 150 }

 Directory: Microsoft.PowerShell.Core\FileSystem::Z:\22 - PowerShel
 l Community Extensions

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 11/11/2007 6:47 PM 173844 bad_screenshot.tif
-a--- 11/11/2007 6:47 PM 173844 screenshot.tif

The command uses the where cmdlet to filter the list of all TIFF images in the current folder
and return only those that have a horizontal resolution different than 150 pixels-per-inch.
Theoretically, I should be using both the HorizontalResolution and VerticalResolution prop-
erties, but I have yet to see an image file with different horizontal and vertical resolutions in
practice.

The Import-Bitmap cmdlet returns fully functional Bitmap objects that hold a reference to
the binary data for the corresponding image. That means we can use the power of .NET to
modify the image and save it in a different format. Luckily, we do not need to resort to working
with raw .NET objects here. PSCX has two useful cmdlets that allow us to resize an image and
then save it in a specified format—the Resize-Bitmap and Export-Bitmap cmdlets. The former
accepts a Bitmap object, modifies it, and returns another Bitmap object. The latter just takes a
bitmap and saves it in the specified format. We can use these to take care of one of the most
common image-related operations—creating a thumbnail for an image. Here is the code that
does this:

PS> $original = Import-Bitmap screenshot.tif
PS> $thumb = Resize-Bitmap $original -Percent 10
PS> Export-Bitmap $thumb -Path thumbnail.png -Format Png
PS> $original | Select Width,Height

Deshev_940-3C21.fm Page 436 Wednesday, January 23, 2008 7:41 AM

C HA P TE R 2 1 ■ PO W E R S HE L L CO M M U N IT Y E X T E N S IO N S 437

 Width Height
 ----- ------
 1119 828

PS> $thumb | Select Width,Height

 Width Height
 ----- ------
 111 82

Look at the Width and Height properties for the original image and the final result. The
code generates a thumbnail with a size that is ten percent of the original image dimensions.
Images encoded in the TIFF format are usually large files; that format is used when you need
precision and no loss of quality. Hoping that we would get a smaller thumbnail file by switching to
another format, we save the image in the PNG format.

Clipboard Helpers
I do not remember anymore how many times I have wanted to have the output of a command
placed in the Windows clipboard so that I could paste it in some other program. Until recently,
that was downright impossible without using a third-party program that accepts piped text and
sets that on the clipboard buffer. Windows Vista finally fixes that and ships with a nice utility
called clip.exe. It does just what we need most of the time; it sets all the text it has been piped
in as the clipboard contents. Unfortunately, we cannot say we have this problem solved. First,
clip.exe does not handle anything but text, and the Windows clipboard can contain various
file formats: rich text, HTML, images, files, and many more. Second, at the time of this writing,
Windows Vista is yet to see wide adoption, and we may need to maintain many Windows XP
machines. PSCX steps in with its clipboard helper cmdlets and allows us to do our job on different
versions of Windows without installing any other programs.

The most basic need that we have is getting clipboard contents. We can do that with the
Get-Clipboard cmdlet. Whenever you copy a piece of text, like the current paragraph for example,
you can get it from your script by calling the cmdlet. Here is how:

PS> Get-Clipboard
The most basic need that we have is getting clipboard contents. We can
 do that with the Get-Clipboard cmdlet. Whenever you copy a pie
ce of text, like the current paragraph for example, you can get it fro
m your script by calling the cmdlet. Here is how:

Note that many programs will not keep plain text on the clipboard even though they may
seem to contain text. Microsoft Word, for example, will put copied text as HTML and RTF text.
The default Get-Clipboard cmdlet behavior will return a fully formatted HTML document that
contains a lot of formatting that you do not need along with some custom HTML tags that
only Microsoft products understand. The Get-Clipboard authors have provided a nice switch,
FragmentOnly, that allows us to get only the copied text. Let’s now copy the first two sentences
of this paragraph and get the fragment as an HTML string:

Deshev_940-3C21.fm Page 437 Wednesday, January 23, 2008 7:41 AM

438 CH AP T E R 2 1 ■ P O W E R SH E L L C OM M U N I TY E X TE N S I ON S

PS> Get-Clipboard -Html -FragmentOnly
<span lang=EN-US style='font-size:12.0pt;mso-bidi-font-size:
10.0pt;font-family:"Times New Roman";mso-fareast-font-family:"Times Ne
w Roman";
mso-ansi-language:EN-US;mso-fareast-language:EN-US;mso-bidi-language:A
R-SA'>Note
that many programs will not keep plain text on the clipboard even thou
gh they
may seem to contain text. Microsoft Word for example will put copied t
ext as
HTML and RTF text.

Apart from the somewhat long style attribute in there, the HTML code looks very clean.
We are not limited to text-based formats with Get-Clipboard. It can return various objects

depending on what it finds on the clipboard. The ones we can make the most use of are images
and files. We can get an image that has been copied on the clipboard as a
System.Drawing.Bitmap object. For example, press the Print Screen key; it will take a screenshot
of your desktop and place an image on the clipboard. You can get that and save it to a file using
this command:

PS> $screen = Get-Clipboard -Image
PS> $screen | select Width,Height,PixelFormat

 Width Height PixelFormat
 ----- ------ -----------
 1440 900 Format32bppRgb

PS> Export-Bitmap -Bitmap $screen -Path screenshot.png -Format Png

In my case, I got a 1440 × 900 image in 32 bits-per-pixel color depth. Note that we have to
provide the Image parameter to Get-Clipboard; it will default to text otherwise and return a $null
value. At the end, we saved the image using another PSCX cmdlet, Export-Bitmap.

Getting file objects from the clipboard is easy too. We get them as regular FileInfo objects
that we can pass to other PowerShell cmdlets. This can be a useful technique for providing
parameters to scripts. For example, we can copy several files from Windows Explorer and
invoke commands that will print various statistics. I just copied two image files, and here is
how I can get information about them:

PS> Get-Clipboard -Files

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 11/11/2007 6:47 PM 173844 screenshot.tif
-a--- 11/12/2007 5:56 AM 184792 screenshot.png

PS> Get-Clipboard -Files | Import-Bitmap | select Size

Deshev_940-3C21.fm Page 438 Wednesday, January 23, 2008 7:41 AM

C HA P TE R 2 1 ■ PO W E R S HE L L CO M M U N IT Y E X T E N S IO N S 439

Size

{Width=1119, Height=828}
{Width=1440, Height=900}

As you can see, piping the file collection to other cmdlets allows us to get detailed informa-
tion. An important thing to note here is that, just as the case with image data, we need to pass
the Files parameter to Get-Clipboard, or we will not get anything back.

Not only can we get the clipboard contents in various formats but we can put values in
there too. This is where the Set-Clipboard cmdlet comes into play. The most common case is
to collect text from a shell command and save it to the clipboard. Here is how we can do that:

PS> "Set-Clipboard text" | Set-Clipboard
PS> Set-Clipboard -Text "Set-Clipboard text"

Both lines do the same thing; they clear the existing clipboard contents and replace them
with the string we piped in or provided as the Text parameter. We can also set HTML content:

PS> Set-Clipboard -Html "<i>Set-Clipboard</i> rocks"

The <i> tag marks text as italics. If you are pasting the text in programs like Microsoft Word
that can handle HTML data, the cmdlet name will be italicized.

The real fun with Set-Clipboard comes when we start to work with images and files. Here
is how we can get an image and place it on the clipboard:

PS> $image = Import-Bitmap screenshot.tif
PS> Set-Clipboard -Image $image
PS>

Note that we are using another PSCX cmdlet, Import-Bitmap, to load the image in the first
place. Now that we have the image available in our clipboard, we can paste it in programs that
support image data: Paint and Microsoft Word are the first that come to mind.

Placing files on the clipboard may sound odd the first time you encounter it, but it is a useful
technique to keep in mind. We can feed a collection of files that we have obtained from another
cmdlet to Set-Clipboard and make those files available to other programs. Many programs accept
file pastes, and that means we can feed them data originating from PowerShell. For example, here
is how we can get all PNG images in the current folder and put them on the clipboard:

PS> Set-Clipboard -Files (dir *.png)
PS>

Pasting the files in a program will trigger different actions depending on the program itself.
Pasting those files in Windows Explorer will copy them to the current folder just like a regular
file copy and paste. Pasting them in Microsoft Word will embed the files in the document.

PSCX offers two helper cmdlets that set the clipboard contents when being passed various
objects: Out-Clipboard and Write-Clipboard. The former will convert objects to text using the
Out-String cmdlet effectively formatting them just like they would look on the console before
placing the text on the clipboard. The latter will use the built-in string representation of an
object, bypassing PowerShell’s formatting. Here is how we can get the five processes using the most
memory and place a table containing the data on the clipboard using PowerShell’s formatting:

Deshev_940-3C21.fm Page 439 Wednesday, January 23, 2008 7:41 AM

440 CH AP T E R 2 1 ■ P O W E R SH E L L C OM M U N I TY E X TE N S I ON S

PS> Get-Process | sort WS -Desc | select -First 5 | Out-Clipboard
PS>

The clipboard contains text like this:

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 467 21 56752 79056 390 206.55 2076 WINWORD
 155 8 103696 60644 208 158.73 1968 dwm
 511 14 70368 58696 177 1004 svchost
 791 36 46912 53656 279 80.55 2008 explorer
 760 11 66444 53304 242 37.16 3052 powershell

To contrast this output with the default string representation, let’s perform the same opera-
tion, but this time, we’ll pipe the objects through Write-Clipboard:

PS> Get-Process | sort WS -Desc | select -First 5 | Write-Clipboard
PS>

The clipboard now contains text that looks like this:

System.Diagnostics.Process (WINWORD)
System.Diagnostics.Process (dwm)
System.Diagnostics.Process (svchost)
System.Diagnostics.Process (explorer)
System.Diagnostics.Process (powershell)

The Write-Clipboard cmdlet obtains the text representation by calling the Object.ToString()
method for all objects.

New Providers
The PowerShell Community Extensions project contains quite a few of cmdlets, functions, and
scripts. That is not all—the snap-in assembly contains three providers that can help us out a
lot. Two of the providers allow us to manipulate machine-specific information stores: one works
with the .NET global assembly cache, the other can access the Internet Explorer 7 feed store.
The third provider works in a Windows domain only, and it allows us to work with the domain’s
Active Directory in a way that is familiar to us. The providers make those stores look like file
systems inside PowerShell, and we can use familiar cmdlets to navigate, extract data, and
manipulate items.

Reading from the .NET Global Assembly Cache
The AssemblyCache provider allows us to access the .NET global assembly cache. It automati-
cally registers a new drive, Gac. The assemblies are exposed as AssemblyName objects that we can
use to obtain various information. Here is how to get all the PowerShell assemblies:

Deshev_940-3C21.fm Page 440 Wednesday, January 23, 2008 7:41 AM

C HA P TE R 2 1 ■ PO W E R S HE L L CO M M U N IT Y E X T E N S IO N S 441

PS> cd Gac:

PS> dir *PowerShell*

Version PublicKeyToken Arch Culture Name
------- -------------- ---- ------- ----
1.0.0.0 31bf3856ad364e35 MSIL Microsoft.PowerShell...
1.0.0.0 31bf3856ad364e35 MSIL Microsoft.PowerShell...
1.0.0.0 31bf3856ad364e35 MSIL Microsoft.PowerShell...
1.0.0.0 31bf3856ad364e35 MSIL Microsoft.PowerShell...
1.0.0.0 31bf3856ad364e35 MSIL Microsoft.PowerShell...
1.0.0.0 31bf3856ad364e35 MSIL Microsoft.PowerShell...
1.0.0.0 31bf3856ad364e35 MSIL Microsoft.PowerShell...
1.0.0.0 31bf3856ad364e35 MSIL Microsoft.PowerShell...
1.0.0.0 31bf3856ad364e35 MSIL Microsoft.PowerShell...
1.0.0.0 31bf3856ad364e35 MSIL Microsoft.PowerShell...
1.0.0.0 31bf3856ad364e35 MSIL Microsoft.PowerShell...
1.0.0.0 31bf3856ad364e35 MSIL Microsoft.PowerShell...

We can run different queries by using cmdlets like select or foreach. Here is how to get
just the names for the PowerShell assemblies:

PS> dir *PowerShell* | select Name

Name

Microsoft.PowerShell.Security
Microsoft.PowerShell.Commands.Utility.resources
Microsoft.PowerShell.Commands.Utility.resources
Microsoft.PowerShell.ConsoleHost
Microsoft.PowerShell.Security.resources
Microsoft.PowerShell.Security.resources
Microsoft.PowerShell.Commands.Utility
Microsoft.PowerShell.Commands.Management.resources
Microsoft.PowerShell.Commands.Management.resources
Microsoft.PowerShell.ConsoleHost.resources
Microsoft.PowerShell.ConsoleHost.resources
Microsoft.PowerShell.Commands.Management

Access to the global assembly cache is read only for the time being; there is no way to add,
remove, or modify an assembly there.

Exploiting the Internet Explorer Feed Store
Internet Explorer 7 comes with a global feed store. The concept is simple: RSS feed subscrip-
tion data and item caches are stored in a central location so that they can be shared by many
applications. On initialization, the PSCX snap-in registers a new Feed drive that we can use to
access the data. Here is how that looks:

Deshev_940-3C21.fm Page 441 Wednesday, January 23, 2008 7:41 AM

442 CH AP T E R 2 1 ■ P O W E R SH E L L C OM M U N I TY E X TE N S I ON S

PS> cd Feed:

PS> dir

Type Name ItemCount UnreadItemCount
---- ---- --------- ---------------
folder Microsoft Feeds 95 89

PS> cd 'Microsoft Feeds'
Microsoft Feeds
PS> dir

Type Name ItemCount UnreadItemCount
---- ---- --------- ---------------
feed Microsoft at Home 45 43
feed Microsoft at Work 50 46

Feeds that we subscribe to look like folders, and feed items like, well, items. Unlike the Gac
drive, we can manipulate items in various ways. For example, we can use the standard New-Item
cmdlet to subscribe to a new feed. Here is how to add a subscription for the PowerShell team
blog’s Atom feed:

PS> $url = "http://blogs.msdn.com/powershell/atom.xml"
PS> pwd

Path

Feed:\Microsoft Feeds

PS> New-Item -itemType feed -path "PowerShell Blog" -value $url

Type Name ItemCount UnreadItemCount
---- ---- --------- ---------------
feed PowerShell Blog 0 0

The new feed folder does not contain any items; it will do so when the time comes for
Internet Explorer to refresh the feed’s data. This is a setting for the browser and can be changed. We
can force an update of the feed by requesting the feed URL in the browser:

PS> & 'C:\Program Files\Internet Explorer\iexplore.exe' $url
PS> dir 'PowerShell Blog'

 Name Title Author PubDate
 ---- ----- ------ -------
 0 Howto: Invoking ... PowerShellTeam 9/26/2007 8:16:00 PM
 1 "Notepad for Pow... PowerShellTeam 10/9/2007 1:45:00 AM
 2 IT administrator... PowerShellTeam 10/17/2007 1:41:00 AM

Deshev_940-3C21.fm Page 442 Wednesday, January 23, 2008 7:41 AM

C HA P TE R 2 1 ■ PO W E R S HE L L CO M M U N IT Y E X T E N S IO N S 443

 3 Cool Stuff Coming! PowerShellTeam 10/27/2007 6:03:30 AM
 4 Dynamic Casting PowerShellTeam 10/29/2007 6:14:22 PM
...

Once we have the items downloaded, we can read them like normal files. Remember that
the name of the item is its numerical ID:

PS> cd ".\PowerShell Blog"
Microsoft Feeds\PowerShell Blog
PS> dir 14 | Format-List

LocalID : 14
Title : Check it out: Out-vCard
Author : PowerShellTeam
PubDate : 11/7/2007 11:51:51 PM

PS> (dir 14).Description
<p>Check out Dmitry Sotnikov's blog <a href="http://dmitrysotnikov.wo
rdpress.com/2007/11/07/out-vcard-exporting-outlook-address-book/">Out-
vCard: Exporting Outlook Address Book.
</p><p>It lets you do things like:
...

When we are done, we can delete the subscription by deleting the feed folder we just created:

PS> del 'PowerShell Blog'

Confirm
The item at Feed:\Microsoft Feeds\PowerShell Blog has children and the
 Recurse parameter was not specified. If you continue, all children
will be removed with the item. Are you sure you want to continue?
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):Y

Manipulating Windows Active Directory
The DirectoryServices provider is a very valuable for system administration. PSCX will detect if
you are running inside a Windows domain, and if so, it will register a new drive with the name
of the domain. This is what that drive looks like for my test domain called TEST:

PS> get-psdrive | where { $_.Provider.Name -eq "DirectoryServices" }

Name Provider Root CurrentLo
 cation
---- -------- ---- ---------
TEST DirectoryS... TEST.local\

Deshev_940-3C21.fm Page 443 Wednesday, January 23, 2008 7:41 AM

444 CH AP T E R 2 1 ■ P O W E R SH E L L C OM M U N I TY E X TE N S I ON S

We can navigate the Active Directory objects using the file system abstraction:

PS> cd Test:\
TEST.local\
PS> dir

 LastWriteTime Type Name
 ------------- ---- ----
 11/6/2007 10:06 AM builtinDomain Builtin
 11/6/2007 10:06 AM container Computers
 11/6/2007 10:06 AM organizationalUnit Domain Controllers
 11/6/2007 10:06 AM container ForeignSecurityPrincipals
 11/6/2007 10:06 AM infrastructureUpdate Infrastructure
 11/6/2007 10:06 AM lostAndFound LostAndFound
 11/6/2007 10:06 AM msDS-QuotaContainer NTDS Quotas
 11/6/2007 10:06 AM container Program Data
 11/6/2007 10:06 AM container System
 11/6/2007 10:06 AM container Users
PS> cd Users
TEST.local\Users

PS> dir ADSITEST2

 LastWriteTime Type Name
 ------------- ---- ----
 11/8/2007 5:21 AM user ADSITEST2

We can do recursive dir operations combined with a pipe through the where cmdlet to
search for various objects. Here is how to get all groups in the directory:

PS> dir -R | where { $_.Type.Name -eq 'group' }

 LastWriteTime Type Name
 ------------- ---- ----
 11/6/2007 10:38 AM group Account Operators
 11/6/2007 11:07 AM group Administrators
 11/6/2007 10:38 AM group Backup Operators
 11/6/2007 10:06 AM group Distributed COM Users
...

We can also get various items’ properties. For example, we can use the standard
Get-ItemProperty cmdlet to display properties for our ADSITEST2 test user:

PS> cd \users
TEST.local\users
PS> Get-ItemProperty adsitest2

Deshev_940-3C21.fm Page 444 Wednesday, January 23, 2008 7:41 AM

C HA P TE R 2 1 ■ PO W E R S HE L L CO M M U N IT Y E X T E N S IO N S 445

PSPath : Pscx\DirectoryServices::TEST.loca
 l\users\adsitest2
PSParentPath : Pscx\DirectoryServices::TEST.loca
 l\users
PSChildName : adsitest2
PSDrive : TEST
PSProvider : Pscx\DirectoryServices
BadPasswordTime :
BadPasswordCount : 0
Department :
DisplayName : ADSITEST2
FirstName : ADSITEST2
LastLogon :
LastLogoff :
LogonCount : 0
Mail :
Manager :
OfficeName :
PasswordLastSet : 1/1/1601 2:03:37 AM
SamAccountName : ADSITEST2
Surname :
Telephone :
Title :
UserPrincipalName : ADSITEST2@TEST.local
...

We can not only get information but modify our object, if we are running with domain
administrator credentials. This is how we can set the Title and Mail attributes:

PS> Set-ItemProperty -path ADSITEST2 -Name Title -Value "Mr"
PS> Set-ItemProperty -path ADSITEST2 -Name Mail -Value "adsi@test.com"
PS> Get-ItemProperty -path ADSITEST2 -Name Title

PSPath : Pscx\DirectoryServices::TEST.local\users\ADSITEST2
PSParentPath : Pscx\DirectoryServices::TEST.local\users
PSChildName : ADSITEST2
PSDrive : TEST
PSProvider : Pscx\DirectoryServices
Title : Mr

PS> Get-ItemProperty -path ADSITEST2 -Name Mail

Deshev_940-3C21.fm Page 445 Wednesday, January 23, 2008 7:41 AM

446 CH AP T E R 2 1 ■ P O W E R SH E L L C OM M U N I TY E X TE N S I ON S

PSPath : Pscx\DirectoryServices::TEST.local\users\ADSITEST2
PSParentPath : Pscx\DirectoryServices::TEST.local\users
PSChildName : ADSITEST2
PSDrive : TEST
PSProvider : Pscx\DirectoryServices
Mail : adsi@test.com

Being a domain administrator allows us some power that we had better be careful with.
This is how to delete a user from the Active Directory:

PS> del ADSITEST2
PS>

No, you do not even get a confirmation prompt! Be extra careful with that!

■Note The DirectoryServices provider will work only if your machine is a member of a Windows domain.
The drive that you can use to access the Active Directory objects will simply not appear otherwise.

Utility Applications
PSCX ships with two external applications that can make our lives easier when working with
the shell. One of them is an advanced pager application that helps you read longer text, such as
online documentation in a way that is superior to what the default more pager can offer. The
other is a test utility that can help in debugging a call to an external application.

The first thing you notice after you install PSCX is that reading the help is a different expe-
rience. The default help function is changed to one that pipes the text through the Less-394
program. It is a Windows port of the popular UNIX less pager. The first important feature that
you will spot is the ability to go back to previously scrolled text; you can do that with the up
arrow and Page Up keys. It looks like a little thing, but once you are used to it, you will never go
back to the previous forward-only reading experience. The other nice feature is the ability to
search for text. You can press the slash (/) key, type the search phrase, and press Enter. You will
be transferred to the first match, and all matches will be highlighted. Figure 21-3 shows a
search in progress; instances of the word “ComObject” are highlighted, because that is what
was searched for.

You can press the N key to jump to the next search match. Press Shift+N to go to the
previous match.

As much as I like the less pager, it has its shortcomings. First, it is not very intuitive to
a Windows user. It has rather cryptic shortcut commands that are closer to the vi text editor
shortcuts than to anything popular in the Windows world. You will have to do your portion of
reading through the help file (press H to bring it up at any time) until you get the hang of the
shortcuts. In addition, less suffers from a limitation that PowerShell has when dealing with
input piped to legacy console applications. The text that is piped through less has to be collected
in its entirety before being piped to the pager for display. This incurs a larger memory usage
overhead besides the longer initial wait. Use less with extra caution when working with large
portions of text.

Deshev_940-3C21.fm Page 446 Wednesday, January 23, 2008 7:41 AM

C HA P TE R 2 1 ■ PO W E R S HE L L CO M M U N IT Y E X T E N S IO N S 447

Figure 21-3. The less pager performing an interactive search

Another useful utility that ships with PSCX is the EchoArgs program. It is a small legacy
console application that will just echo back to you the arguments it was given. It is useful when
debugging legacy program invocations. Quite often, we think parameters are being passed to
the program in the same way as if they were called from within cmd.exe, but that may not always be
the case. Check out this program invocation:

PS> echoargs $a=b
Arg 0 is <=b>

You might be thinking that the $ will get sent to the console program—not so. $a is treated
as a variable reference, and that defaults to $null, which, in turn, is transformed into an empty
string. The correct invocation has to escape the $ symbol:

PS> echoargs `$a=b
Arg 0 is <$a=b>

Another common source of error is inadvertent terminator usage, usually the semicolon
(;) and hash (#) symbols. The semicolon is treated as the statement end, and the hash turns the
rest of the line into a comment. Here is a broken semicolon usage:

PS> echoargs do this; that; and that
Arg 0 is <do>
Arg 1 is <this>

The term 'that' is not recognized as a cmdlet, function, operable prog
ram, or script file. Verify the term and try again.
At line:1 char:23
+ echoargs do this; that; <<<< and that
The term 'and' is not recognized as a cmdlet, function, operable progr
am, or script file. Verify the term and try again.
At line:1 char:28
+ echoargs do this; that; and <<<< that

Deshev_940-3C21.fm Page 447 Wednesday, January 23, 2008 7:41 AM

448 CH AP T E R 2 1 ■ P O W E R SH E L L C OM M U N I TY E X TE N S I ON S

Fixing this is simple—escape the semicolon:

PS> echoargs do this`; that`; and that
Arg 0 is <do>
Arg 1 is <this;>
Arg 2 is <that;>
Arg 3 is <and>
Arg 4 is <that>

The same holds true for the comment-start character. Here is a broken expression:

PS> echoargs look for item #3
Arg 0 is <look>
Arg 1 is <for>
Arg 2 is <item>

Again, the fix involves using the backtick escape character:

PS> echoargs look for item `#3
Arg 0 is <look>
Arg 1 is <for>
Arg 2 is <item>
Arg 3 is <#3>

Summary
PowerShell Community Extensions is a project that has accumulated a lot of useful functionality.
What makes it really powerful is that it aims to collect pieces of code from the community—code
that has been used by people to solve real problems. Chances are that that code will be useful
to you should you have a similar problem.

Probably the most valuable thing about PSCX is that it is very comprehensive. With just a
single installation, we get a very large toolset that removes many dependencies on other external
tools. This makes our scripts easier to deploy across machines, as they would likely depend on
only one product instead of many. Using a single large toolset is also easier to gain approval for
in a corporate environment with strict policies on what software gets installed on workstations
and servers. I highly recommend this tool—I routinely install it on a new machine right after
PowerShell installation.

Deshev_940-3C21.fm Page 448 Wednesday, January 23, 2008 7:41 AM

449

■ ■ ■

C H A P T E R 2 2

PSEventing: .NET Events
in PowerShell

PowerShell gives you full control over all .NET objects—well, nearly full control. One often-
missed feature is full support for consuming events. It is possible to subscribe to an event
handler using PowerShell constructs; script blocks can be passed to .NET objects as delegates.
The problem is that there are a lot of complexities involved in this process like thread synchro-
nization and garbage collection—someone needs to manage object life spans so that events
going across scripting boundaries do not find that their handler has been garbage collected.
Additionally, we need some orchestration when it comes to raising events from multiple threads.
PowerShell does not offer any intrinsic support for those scenarios, and you can easily crash
the entire shell if you are not careful in how you implement them.

Lacking full support for events may look like a big omission, but the truth is that, most of
the time, we do not need to deal with events at all. Most scripts are short-lived, short-running,
or both. Nobody builds event-driven solutions or implements complex application frameworks
in shell scripts, right? There are better tools for full-blown application development—please
use C# or VB.NET if you have to deal with those types of issues! Shell scripting is really about
gluing components and working at a higher level of abstraction.

Rant aside, sometimes, we can benefit from being able to consume a .NET class’s events
from script. The most obvious use for that is a script that sits and waits for a FileSystemWatcher
object to notify it when a user deletes a file from a folder. This is where the PSEventing tool
comes to the rescue.

Introducing PSEventing
PSEventing is a free, open-source project run by Oisin Grehan and hosted on CodePlex at
http://www.codeplex.com/PSEventing. It is implemented as a shell snap-in that provides
several cmdlets for working with events.

Although the current release, version 1.0, does not offer an automated installer, installa-
tion is relatively simple. Here are the steps you need to take:

1. Unzip the distribution in the folder of your choice and navigate to it. A good location
might be C:\Program Files\Windows PowerShell Eventing.

2. Run the install.ps1 script contained in the distribution. The script will invoke
InstallUtil.exe and install the snap-in.

Deshev_940-3C22.fm Page 449 Monday, January 14, 2008 3:26 PM

450 CH AP T E R 2 2 ■ P SE V E N T IN G : . N E T E V E N T S IN PO W E R S HE L L

■Note Each PowerShell snap-in inherits from the PSSnapIn class, which, in turn, inherits from
PSSnapInInstaller. PSSnapInInstaller inherits from the .NET Framework Installer class and
plugs into the standard .NET application installation infrastructure. Being an installer, a snap-in, among other
things, reads and writes data to the system registry. That is why you have to run the install.ps1 script
under an administrator user account.

An important thing to keep in mind is that “installing” a snap-in only registers it with
PowerShell. It does not automatically run it whenever the shell starts. We have to add the snap-
in to our shell session before using any of the new cmdlets. To do that, we use the Add-PSSnapin.
The command we need for registering PSEventing is simple:

Add-PSSnapin PSEventing

■Note The Add-PSSnapin cmdlet invocation is not needed if you are still running the same shell session
that you used to install PSEventing. That shell is run with elevated privileges, and it is best, for security reasons,
if you exit it and start a shell with normal privileges.

Writing scripts that use PSEventing presents us with an interesting challenge: how do we
know if the snap-in is loaded already, so that we do not load it twice? We will get an error if we try to
load the snap-in for the second time. A possible solution is to use Get-PSSnapin to check that:

if ((Get-PSSnapin PSEventing -ErrorAction SilentlyContinue) -eq $null)
{
 Add-PSSnapin PSEventing
}

That feels like the cleanest solution, but I usually prefer the lazy person’s alternative:

Add-PSSnapin PSEventing -ErrorAction SilentlyContinue

The preceding line just ignores any error that may be raised while adding the snap-in. Of
course, a load error may have many causes, and ignoring it may not be very smart. Most of the
time, Add-PSSnapin will complain about loading something twice, so I feel pretty safe.

Event-Handling Mechanics
An event in .NET is usually given a delegate, and the sender invokes that delegate when it raises
the event. Many people are used to that paradigm and would probably expect that that would
be the case with PSEventing. Maybe we can just pass a script block as an event handler—not so
fast! PowerShell lacks good threading support for scripts, and firing an event from a foreign
piece of code may be dangerous from a concurrency point of view.

That is why PSEventing takes a slightly different approach: it creates the abstraction of
a global event queue. All access to the event queue will be synchronized to protect us from

Deshev_940-3C22.fm Page 450 Monday, January 14, 2008 3:26 PM

CH A PT E R 2 2 ■ P S E V E N T I N G : . N E T E V E N TS IN P OW E R S H E L L 451

concurrency-related problems. The rules according to which the queue is filled are stored in
the event binding table. You call Connect-EventListener to connect to an event and that creates
an entry in the binding table. You can use the Get-EventBinding cmdlet to inspect that table.
A sample table that shows two entries follows:

PS C:\> Get-EventBinding

VariableName EventName TypeName Listening
------------ --------- -------- ---------
fsw Created FileSystemWatcher True
fsw Deleted FileSystemWatcher True

Here, we have two bindings that will handle the Created and Deleted events of the fsw variable,
which is of type FileSystemWatcher. Unbinding an event is done via the Disconnect-EventListener
cmdlet.

Binding to an event does not involve any way of specifying a callback that will be executed
when the event is raised. When an event is raised, it is added to the queue, and the rest is left up
to the client code. You are free to poll the queue as often as you wish and pull the events out of
it. The cmdlet that queries the queue and consumes all events is Get-Event. It returns PSEvent
objects, from which you can get the event arguments, passed by the event sender, by querying
the Args property. A special feature of Get-Event is that it can block execution and wait for an
event to be added to the queue. This spares us the trouble of writing polling loops!

FileSystemWatcher: A Real-World Example
Let’s go through a complete example and put everything together. Assume we are presented
with the task of monitoring a folder and notifying the user when somebody deletes a file. To do
that, we use a System.IO.FileSystemWatcher object and subscribe to its Deleted event. We will
do that from a script called WatchDeletedFiles.ps1:

#monitor deleted files

Add-PSSnapin PSEventing -ErrorAction SilentlyContinue

$fsw = New-Object System.IO.FileSystemWatcher
$fsw.Path = "c:\powershell"
$fsw.EnableRaisingEvents = $true

Connect-EventListener fsw deleted

Get-Event -wait | `
 foreach { `
 Write-Host -foreground Yellow `
 "Warning!!! Somebody just deleted $($_.Args.FullPath)"
 }

Disconnect-EventListener fsw deleted
$fsw.EnableRaisingEvents = $false

Deshev_940-3C22.fm Page 451 Monday, January 14, 2008 3:26 PM

452 CH AP T E R 2 2 ■ P SE V E N T IN G : . N E T E V E N T S IN PO W E R S HE L L

We are monitoring the C:\powershell folder, and the only FileSystemWatcher event of
interest is the Deleted one. Keep in mind that there can be more than one event in the queue,
for example, when a user deletes multiple files in one operation. That is why we use For-EachObject
on the Get-Event output. Deleting files is some serious business, so we emit shiny yellow text to
get the user’s attention.

We pay extra attention to cleaning up before the script exits. We do not need to listen to the
event anymore, and we do not want to leave garbage entries in the global event binding table,
so we just go ahead and disconnect from the event. In addition, we tell the FileSystemWatcher
object, which the $fsw variable references, to stop raising events. Running the script will block
the console session until a file is deleted. When that happens, the full file path will be logged
to the console, and the script will terminate:

PS C:\PowerShell> .\WatchDeletedFiles.ps1
Warning!!! Somebody just deleted c:\powershell\VeryImportant.dll

Monitoring Entries Written to the System
Event Logs
.NET allows us to access the system event logs, provided we have been granted sufficient privileges.
We can do that through the System.Diagnostics.EventLog class that is a part of the framework.
That class is a very powerful tool and can be used to write entries to the event log, and I covered
using it in Chapter 16. Most documentation resources about that class focus on its ability to
write entries to an event log. We are interested in another feature: the ability to receive notifi-
cations about newly written entries. The class exposes an EntryWritten event that will be fired
not only when our application logs an event but whenever a different application, running on
the same computer, does so. The event is limited to working on only the local machine and will
not fire if you are working with a remote event log, but operating on the local machine is enough
in many cases.

As an example, we can create a script that waits on the EntryWritten event and notifies us
when a user logon is attempted. We will be receiving instances of the System.Diagnostics.
EntryWrittenEventArgs object, and we will access the new EventLogEntry object via the Entry
property: $_.Args.Entry. Additionally, we need to filter events, since we are interested in only
the logon attempt events. We filter using the InstanceID property: we are looking for entries
with an instance ID of 4648. How do we get the correct number for our event? Simple—we just
look it up in the system event viewer. Most likely, we have a previously logged event in there.
The event log entry will contain the instance ID, but it will call it the Event ID property. This
discrepancy comes from the fact that “Event ID” is the obsolete name of the instance ID property.
Figure 22-1 shows a sample view of a logon event.

Note that the 4648 event that we are using here is a security audit event; its source is Security-
Auditing. Windows Vista has its user logon auditing turned on by default, but you may need to
enable it on your system.

Deshev_940-3C22.fm Page 452 Monday, January 14, 2008 3:26 PM

CH A PT E R 2 2 ■ P S E V E N T I N G : . N E T E V E N TS IN P OW E R S H E L L 453

Figure 22-1. An event log entry showing a Logon audit event (Event ID = 4648)

Finally, here is the script, WatchEventLog.ps1, that listens for the event:

Add-PSSnapin PSEventing -ErrorAction SilentlyContinue

$securityLog = New-Object System.Diagnostics.EventLog "Security"
$securityLog.EnableRaisingEvents = $true

Connect-EventListener securityLog EntryWritten
$logonAttemptEventInstanceID = 4648

Get-Event -wait | `
 where { `
 $_.Args.Entry.InstanceID -eq $logonAttemptEventInstanceID
 } | `
 foreach { `
 Write-Host -foreground Red `
 "Logon attempt at: $($_.Args.Entry.TimeGenerated)"
 }

Disconnect-EventListener securityLog EntryWritten
$securityLog.EnableRaisingEvents = $false

Deshev_940-3C22.fm Page 453 Monday, January 14, 2008 3:26 PM

454 CH AP T E R 2 2 ■ P SE V E N T IN G : . N E T E V E N T S IN PO W E R S HE L L

The script filters the events according to the InstanceID property and then notifies the user by
writing out in red the time the event was generated. Note that, just as with the FileSystemWatcher
example, we need to disconnect our event listener and tell the EventLog object to stop raising
events as a part of our clean up logic.

A word of caution about accessing the Security event log—it will require administrator
privileges on any system. Running the script on Windows Vista may result in the following error:

C:\PowerShell> .\WatchEventLog.ps1
Exception setting "EnableRaisingEvents": "Requested registry access is
 not allowed."
At Z:\22 - PSEventing\WatchEventLog.ps1:4 char:14
+ $securityLog.E <<<< nableRaisingEvents = $true

The error is quite descriptive; the script lacks the required privileges. To make it work, ensure
that your PowerShell session is running with elevated privileges. To do so, right-click the
PowerShell shortcut, and select the “Run as an administrator” item from the context menu.

Here is what happens after running the script and logging on with a different user account:

PS C:\PowerShell> .\WatchEventLog.ps1
Logon attempt at: 07/15/2007 09:01:59

Handling WMI Events
WMI is a complex and powerful tool for managing a Windows network. It is the infrastructure
that provides common interfaces to managing operating system devices, services, and applica-
tions. PowerShell already has excellent support for querying WMI objects and extracting
information about various system components. For details on how to do that, please refer to
Chapter 20. With PSEventing, we can go further and handle events that WMI triggers when it
detects a change in the operating system environment. The .NET classes from the System.
Management namespace, most importantly the ManagementEventWatcher one, are the means of
receiving notifications about those changes. The ManagementEventWatcher class is a generic
listener; it needs a separate query object that specifies the type of event we are interested in.
Additionally, the query can specify filter conditions based on the event source’s properties and
a poll interval. Queries are written in the WQL language that is very similar to SQL. Querying
the WMI system looks like working with a database table. To create something useful, we can
consume WMI events that tell us when the World Wide Web Publishing Service (W3SVC) service
stops. Here is our query that will look for the instance modification event about stopping the
W3SVC service:

SELECT *
FROM __InstanceModificationEvent
WITHIN 10
WHERE
 TargetInstance ISA 'Win32_Service'
 AND TargetInstance.Name = 'w3svc'
 AND TargetInstance.State = 'Stopped'

Deshev_940-3C22.fm Page 454 Monday, January 14, 2008 3:26 PM

CH A PT E R 2 2 ■ P S E V E N T I N G : . N E T E V E N TS IN P OW E R S H E L L 455

We are getting objects from the special __InstanceModificationEvent table, and we are
interested in Windows services that have a name of “w3svc” and a status of “Stopped.” The
WITHIN operator specifies the interval in seconds in which the system will poll for updates. A
WMI query is a resource-intensive operation, and we have chosen to poll every 10 seconds, so
that we do not overload the system. Here is the script, Watch_w3svc.ps1, that listens to the event
watcher’s generic EventArrived event to do the job:

Add-PSSnapin PSEventing -ErrorAction SilentlyContinue

$queryString = @'
 SELECT *
 FROM __InstanceModificationEvent
 WITHIN 10
 WHERE
 TargetInstance ISA 'Win32_Service'
 AND TargetInstance.Name = 'w3svc'
 AND TargetInstance.State = 'Stopped'
'@

$query = New-Object System.Management.WQLEventQuery `
 -argumentList $queryString
$watcher = New-Object System.Management.ManagementEventWatcher($query)

Connect-EventListener watcher EventArrived
$watcher.Start()

echo "Waiting for the W3CSVC service to stop..."
Get-Event -wait | `
 foreach { `
 Write-Host -foreground Red "The W3SVC service has stopped!"
 }

#cleanup
$watcher.Stop()
Disconnect-EventListener watcher EventArrived

echo "done"

We create a WQLEventQuery object using our WQL query string. We then pass the query
object to the ManagementEventListener object’s constructor. An important thing to keep in
mind is that we will never get an event until we call the event watcher’s Start method. When
we are done, we call the Stop method in order to let the event watcher clean up properly. We
then disconnect from the EventArrived event. Here is what our script’s output looks like after
running it and stopping the W3SVC service:

PS C:\PowerShell> .\Watch_w3svc.ps1
Waiting for the W3CSVC service to stop...
The W3SVC service has stopped!

Deshev_940-3C22.fm Page 455 Monday, January 14, 2008 3:26 PM

456 CH AP T E R 2 2 ■ P SE V E N T IN G : . N E T E V E N T S IN PO W E R S HE L L

The preceding WMI events script is very useful, but it can be very dangerous too! Failing
to call the event watcher Stop method will leave the system executing the query over and over
again. Running the script several times can cause event watchers to add up, and our system can
slow down significantly because most of the CPU time will be allocated to executing leaked
queries. Remember to stop your event watchers and to disconnect from their events when you
are done with them!

Detecting If Our Script Has Been Terminated
by the User
Let’s get back to our first example, which watches a folder for file delete operations, and see
what happens if the user presses Ctrl+C while the script is listening for events. We will add a
Write-Host call after the script that will get called after the script ends. Here is what we get:

PS C:\PowerShell> .\WatchDeletedFiles.ps1 ; Write-Host "Done"
PS C:\PowerShell>

Yes, we get nothing—not even the “Done” message. PowerShell terminates not only the
script but the entire command that has been typed. Handling Ctrl+C is a weak spot in Power-
Shell 1.0, and that is why the PSEventing snap-in provides two cmdlets that can help us:
Start-KeyHandler and Stop-KeyHandler. They can trap various key presses, but we are interested in
handling Ctrl+C only. I know, learning a new programming environment requires writing your
own Tetris clone, and you certainly can do that with those cmdlets, but I will not be covering it
in this book.

Those cmdlets allow us to write scripts that will not be terminated when the user presses
Ctrl+C. Now, the scripts can react accordingly and most likely release resources properly before
actually terminating. The key (pun intended) to supporting Ctrl+C is to

1. Register a handler using Start-KeyHandler -CaptureCtrlC.

2. Distinguish Ctrl+C events from the rest.

3. Unregister the handler when you are done by calling Stop-KeyHandler.

Of the three, distinguishing the events is the only one that is not immediately obvious. We
will use the fact that Ctrl+C events will have a Name of “CtrlC”, as they are returned by Get-Event.
Here is a modified version of our folder watcher script, called WatchDeletedFilesCtrlC.ps1,
which handles Ctrl+C correctly:

Add-PSSnapin PSEventing -ErrorAction SilentlyContinue

$fsw = New-Object System.IO.FileSystemWatcher
$fsw.Path = "c:\powershell"
$fsw.EnableRaisingEvents = $true

Deshev_940-3C22.fm Page 456 Monday, January 14, 2008 3:26 PM

CH A PT E R 2 2 ■ P S E V E N T I N G : . N E T E V E N TS IN P OW E R S H E L L 457

Start-KeyHandler -CaptureCtrlC
Connect-EventListener fsw deleted

do
{
 $events = Get-Event -wait
}
while(!$events)

foreach ($event in $events)
{
 if ($event.Name -eq "CtrlC")
 {
 Write-Host "Ctrl+C detected"
 break;
 }
 else
 {
 Write-Host -foreground Yellow `
 "Warning!!! Somebody just deleted $($event.Args.FullPath)"
 }
}

Stop-KeyHandler
Disconnect-EventListener fsw deleted
$fsw.EnableRaisingEvents = $false

This time, we are looping over the events using a foreach loop and using if statements
inside, which is semantically equivalent to the where cmdlet we used before. The where-based
solution was easier to use when we needed to filter events according to one condition. Here, we
have two types of events we need to handle. Note the do-while loop that we use around our
Get-Event call. This is needed because sometimes Get-Event will return a $null value after a
Control-C event. The loop just ignores that value and starts another event-listen operation. Our
new script will only warn the user if the file has really been deleted.

Here is what happens when we run our script—it will not be terminated, and the shell will
continue executing the script and the command on the same line:

PS C:\PowerShell> .\WatchDeletedFilesCtrlC.ps1 ; write-host "Done"
Ctrl+C detected
Done
PS C:\PowerShell>

Using Script Blocks As Event Handlers
The previous example showed something nice, but it also hinted about something that is not
so pleasant: it is very difficult to deal with different events and distinguish among them. The

Deshev_940-3C22.fm Page 457 Monday, January 14, 2008 3:26 PM

458 CH AP T E R 2 2 ■ P SE V E N T IN G : . N E T E V E N T S IN PO W E R S HE L L

best way to handle this problem is to use the helper eventhandler.ps1 script that ships with
PSEventing and its utility functions:

• Add-EventHandler($variable, $eventName, $script) will attach a script block as a
handler for the given event.

• Remove-EventHandler($variable, $eventName) lets us detach a previously attached
event handler.

• Do-Events($onlyOnce) will wait for events and process their event handlers one or
more times.

The eventhandler.ps1 file is a part of the official PSEventing release files, but it is not included
in the ZIP archive that contains the snap-in assembly and installer script. Make sure you download
it and place it in the PSEventing installation folder. The following example uses the standard loca-
tion of C:\Program Files\Windows PowerShell Eventing.

Let’s expand our file system watcher example and make it handle both the Deleted and
Created events. This is best done with two calls to Add-EventHandler—one for each event type—
followed by a Do-Events call. We will call that script WatchDeletedCreatedFiles.ps1. Here is
the code:

Add-PSSnapin PSEventing -ErrorAction SilentlyContinue
#include the PSEventing utility function definitions
. "C:\Program Files\Windows PowerShell Eventing\eventhandler.ps1"

$fsw = New-Object System.IO.FileSystemWatcher
$fsw.Path = "c:\powershell"
$fsw.EnableRaisingEvents = $true

$fswVariable = (Get-Variable fsw)
$deletedBlock = {
 param ($sender, $args)
 out-host -input "file deleted"
 format-list -property ChangeType,FullPath -input $args
}
$createdBlock = {
 param ($sender, $args)
 out-host -input "file created"
 format-list -property ChangeType,FullPath -input $args
}

Add-EventHandler $fswVariable Deleted $deletedBlock
Add-EventHandler $fswVariable Created $createdBlock

Do-Events $true

Remove-EventHandler $fswVariable Deleted
Remove-EventHandler $fswVariable Created
$fsw.EnableRaisingEvents = $false

Deshev_940-3C22.fm Page 458 Monday, January 14, 2008 3:26 PM

CH A PT E R 2 2 ■ P S E V E N T I N G : . N E T E V E N TS IN P OW E R S H E L L 459

The script uses the Format-List cmdlet to display details about the event it got. Here is
what the output looks like when we run the script, create a copy of a file in our target folder, and
delete it afterward:

PS C:\PowerShell> .\WatchDeletedCreatedFiles.ps1
file created

ChangeType : Created
FullPath : c:\powershell\test - Copy.txt
PS C:\PowerShell>
PS C:\PowerShell> .\WatchDeletedCreatedFiles.ps1
file deleted

ChangeType : Deleted
FullPath : c:\powershell\test - Copy.txt

Our script calls Do-Events without parameters. This triggers the default behavior: the function
will wait forever or until it receives a Ctrl+C key press. If we don’t want that, we need to pass a
$true parameter like this:

Do-Events $true

The nicest thing about Do-Events is that it allows us to quickly create utilities that sit in the
background and notify us about events that occur on our system. It spares us the trouble of
setting up a while loop that calls Get-Event repeatedly.

Summary
Handling events from .NET objects is not the primary usage scenario for PowerShell, which
could explain why the samples we saw in this chapter look complex and feel like ugly hacks.
Being able to use and create similar solutions requires knowledge about the .NET Framework
and WMI, and a programmer or a system administrator will either have that knowledge or will
greatly benefit from acquiring it. There is great value in being able to work reliably with events
from within scripts, and having a tool like PSEventing under your belt can really help you solve
an otherwise unsolvable scripting problem.

Deshev_940-3C22.fm Page 459 Monday, January 14, 2008 3:26 PM

461

■ ■ ■

C H A P T E R 2 3

Enhancing Tab Completion
with PowerTab

I remember seeing tab completion at work for the first time in a bash shell session running
under Linux several years ago. A friend was typing a really long file name in a bash shell session.
I had already started complaining that he should have copied and pasted the file name when
he hit the Tab key—and the shell automatically completed the entire name for him. My jaw hit
the floor. I had been using DOS and the Windows command prompt for years before that, and
I never imagined the productivity gains I was missing.

Later versions of Windows, starting with Windows 2000, have added rudimentary support
for tab completions to the cmd.exe command shell, and things have gotten a bit better. Power-
Shell is the first product that offers good completion support that works for files, functions,
variables, and commands and can be customized if needed. I already discussed how tab comple-
tion works in Chapter 11, and you even learned how to define your own expansion functions to
provide support for completing custom executable names. PowerTab takes that route and adds so
many advanced features that even UNIX shell users will want to switch to PowerShell.

PowerTab is a free tool that has been built by Marc van Orsouw, also known as /\/\o\/\/
or The PowerShell Guy. The tool consists of a set of scripts that plug into PowerShell’s mecha-
nism for extending the tab completions offered to the user. It tries to provide better completion
suggestions by searching objects that the default shell behavior does not even touch: .NET types,
WMI class names, and many more. The tool also improves the user experience by providing
a drop-down box that contains the suggestions. The default tab expansion allows us to cycle
through the suggestions by pressing the Tab key while PowerTab lists all suggestions and allows us
to select the desired one using the arrow keys or the Tab and Shift+Tab keys.

I have always believed that starting to use an extension tool while learning a new product
is not a good idea. For that reason, I was reluctant to install add-ons and custom scripts while I
was learning PowerShell, and I viewed PowerShell’s default tab completion support as sufficient
for my needs. One afternoon, I installed PowerTab, just to try it out, and I have never looked
back. The tool helps me so much when working with .NET and WMI objects that I cannot
imagine using PowerShell without it anymore. In this chapter, we will go through PowerTab’s
major features, which can make your life at the command prompt much easier.

Deshev_940-3C23.fm Page 461 Tuesday, January 22, 2008 6:46 AM

462 CH AP T E R 2 3 ■ E N HA N C IN G TA B CO M P L E T IO N WI T H P O W E R T AB

Installation
PowerTab does not come with an automated installer. Since getting it installed and running
doesn’t require much effort, it is available in a simple ZIP archive from the author’s site at
http://thepowershellguy.com/blogs/posh/pages/powertab-beta.aspx. As you can see from
the URL, at the time of this writing, PowerTab is still in beta version. The latest version of the
product is 0.99 beta 2. The tool is remarkably stable, though, and I have not seen it crash or
misbehave in any way. So, without waiting any longer, here is how to install it:

1. Download the ZIP distribution from the beta page. The current file name is
PowerTab099b2.zip.

2. Extract the archive contents to a folder of your preference. Using a standard location
like C:\Program Files\PowerTab is best.

3. Launch PowerShell, and navigate to the folder you installed PowerTab in.

4. Execute the PowerTabSetup.ps1 script by dot-sourcing it; the command should be

PS> . .\PowerTabSetup.ps1

 PowerTab 0.98 PowerShell TabExpansion Setup
...

5. Answer the questions the install script presents, and then wait for it to do its job.

■Note Dot-sourcing the script in step 4 is not strictly necessary, but it is required to get PowerTab running
for the current shell session. If you do not dot-source the script, you will need to restart your shell instance.

The setup script will create a default configuration file. The file is in a readable XML format
and is called PowerTabConfig.xml. By default, it is stored next to your profile script.

Next, the script will update your profile script, and it will append some code that activates
PowerTab whenever you start your shell. The code will look like this:

################ Start of PowerTab Initialisatie Code ###############
#
added to Profile by PowerTab Setup For Loading of
Custom TabExpansion,
#
/\/\o\/\/ 2007
#
http://ThePowerShellGuy.com
#

Initialize PowerTab

& 'C:\Program Files\PowerTab\Init-TabExpansion.ps1' `
 -ConfigurationLocation 'C:\Users\Hristo\Documents\WindowsPowerShell'

Deshev_940-3C23.fm Page 462 Tuesday, January 22, 2008 6:46 AM

C HA P TE R 2 3 ■ E N H AN C I N G T AB C O M P L E T I O N W IT H P OW E R TA B 463

Finally, the setup script will build the tab completion database and save it to the
TabExpansion.xml file. Building the database is a lengthy process, as the script walks over all
.NET types and WMI classes. The end result is a local cache with class and command names
that are used for providing tab completions.

How PowerTab Works
PowerTab completely replaces the shell’s tab completion mechanism. It supplies all the standard
completions that you are used to: commands, variables, functions, and so on, and adds a lot more.
For example, I find PowerTab very useful when I am trying to script a .NET type. Remember the
code that used the System.Net.WebClient class from Chapter 17? PowerTab can help you by
completing the type name in the New-Object cmdlet invocation line if you press Tab while typing
the full class name. Finish typing the namespace part, at least, so that you do not get a huge list
of suggestions. Figure 23-1 shows how the suggestions list looks.

Figure 23-1. PowerTab completing .NET class names

See the [Tab] text shown at the upper-left corner of the shell window? It indicates that
PowerTab is in the middle of a tab completion operation. It will go away once you select a
completion from the list.

When it comes to working with various objects, no matter if they are coming from the
.NET, COM, or WMI realm, PowerTab will enumerate their properties and methods and will
offer completions. Continuing with our System.Net.WebClient example, PowerTab can help us
download data from the Internet by completing the right Download* method for us if we start
typing the method name and press Tab. The result is shown in Figure 23-2.

Method and property completion works not only with instance methods but with static
methods too. PowerTab detects the type literal and the :: separator and offers completions
from the type’s static members.

Deshev_940-3C23.fm Page 463 Tuesday, January 22, 2008 6:46 AM

464 CH AP T E R 2 3 ■ E N HA N C IN G TA B CO M P L E T IO N WI T H P O W E R T AB

Figure 23-2. PowerTab completing object methods

I happen to write a lot of WMI-related code, and I believe that the PowerShell environment
makes working with WMI as easy as it can get. PowerTab makes that even easier by providing
completions for WMI class names. One of the biggest hurdles when working with WMI is remem-
bering the right class that you have to use because of the huge number of classes. PowerTab
finally solves that problem. Figure 23-3 shows how PowerTab can assist us with picking the
right WMI class for working with processes.

Figure 23-3. PowerTab completing WMI class names

PowerTab detects WMI class names from their prefix, and the completion kicks in if the
current word starts with WMI_, CIM_ or MSFT.

I have always found the command history support in PowerShell a bit lacking. Sure, we
can always use DOSKEY and press F7 anytime to get a nice visual list of all the commands, but
that list is not searchable and gets hard to navigate when we have a big history. PowerTab
solves that problem by introducing special syntax for searching the history buffer and providing
completions. If we need to get all commands containing the “cd” string, we need to type h_cd

Deshev_940-3C23.fm Page 464 Tuesday, January 22, 2008 6:46 AM

C HA P TE R 2 3 ■ E N H AN C I N G T AB C O M P L E T I O N W IT H P OW E R TA B 465

and press Tab. Figure 23-4 shows the result—all commands that have been used to navigate to
a different folder.

Figure 23-4. PowerTab command history completion

The h_ prefix that you need to type may seem like it would be appended to the final command
text. Do not worry about that happening. Unlike other completions that simply add to the
current command, this one will also delete the h_ part. Of course, typing only h_ and pressing
Tab will get you a list of all commands stored in the history buffer.

Command parameter names are also very hard to remember when working with PowerShell.
For example, I keep trying to use a nonexistent -Process parameter when getting process instances
with the Get-Process cmdlet, where I should be using the -Name one. I guess I am not the only
person that has this problem, as PowerTab has a feature that solves it. Whenever you type a
hyphen after a cmdlet name and press Tab, you will get a completion list with all its parameters.
Figure 23-5 shows the completion list for the Get-Process cmdlet.

Figure 23-5. PowerTab parameter name completion

The best part about this feature is that it works for functions and external script files too.

Deshev_940-3C23.fm Page 465 Tuesday, January 22, 2008 6:46 AM

466 CH AP T E R 2 3 ■ E N HA N C IN G TA B CO M P L E T IO N WI T H P O W E R T AB

Data Grid Pop-up Windows
Sometimes, cramming lots of information in that tiny box that appears inside the shell window
gets hard. PowerTab tries to deal with that by opening up a new window. The window blocks
the tab completion process and displays a data grid. The user can get detailed information
about the objects in the grid and select one by double-clicking a row or selecting it and pressing
Enter. The selected item gets returned as the valid completion.

Similar to the syntax for history completions, PowerTab offers several shortcuts that pop
up a new window. Probably the most attractive is the one that returns a list of WMI classes. To
get the window, we have to type w_ optionally followed by a part of a WMI class name and press
Tab. Figure 23-6 shows the window displaying information about the WMI classes considered for
completion.

Figure 23-6. PowerTab pop-up grid window displaying WMI classes

I like this completion method better, especially when it comes to WMI classes, because we
get a Description column with a short explanation of what a class does.

■Note You have to skip the Win32_ part of a WMI class name when using the w_ shortcut to request
completions with a pop-up window. To get classes that look like the proc string, possibly looking for
Win32_Process, you have to type w_proc[tab]. Typing w_win32_proc[tab] will not work.

PowerTab supports other shortcuts that pop up a new window:

• t_: Shows a list of .NET types

• f_: Lists currently defined functions

• d_: Gets all files and directories in the current directory

• g_: Lists commands stored in the command history

• c_: Shows custom completions (I describe adding custom tab completions later in
this chapter.)

Deshev_940-3C23.fm Page 466 Tuesday, January 22, 2008 6:46 AM

C HA P TE R 2 3 ■ E N H AN C I N G T AB C O M P L E T I O N W IT H P OW E R TA B 467

A Useful Utility

PowerTab makes available the function that creates the pop-up window to us as users, so
that we can display objects in a bit more user-friendly manner. The name of the function is
out-dataGridView, and we can pipe an object collection to it. Here is how to use it to display the
process ID, name, and working set property values for all processes:

PS> $processes = Get-Process | select ID,Name,WS
PS> $processes | out-dataGridView

Figure 23-7 shows the resulting window.

Figure 23-7. A grid with all processes on the system generated by out-dataGridView

Configuring PowerTab
The heart of the PowerTab configuration is the PowerTabConfig.xml file. It is stored next to your
PowerShell profile script; under Windows Vista, that is most likely the C:\Users\<UserName>\
Documents\WindowsPowerShell folder. The XML content is pretty readable, and it is very easy to
find your way around the file and to edit it by hand. Settings are exposed in the form of proper-
ties, and their XML elements look like this:

<Config>
 <Category>Global</Category>
 <Name>TabActivityIndicator</Name>
 <Value>1</Value>
 <Type>bool</Type>
</Config>

Deshev_940-3C23.fm Page 467 Tuesday, January 22, 2008 6:46 AM

468 CH AP T E R 2 3 ■ E N HA N C IN G TA B CO M P L E T IO N WI T H P O W E R T AB

As you can probably guess by looking the preceding snippet, you need to change the 1 to 0
if you want to keep PowerTab from showing the [Tab] text at the top-left corner of the shell
window while displaying tab expansions. Remember to restart your shell session after you
modify the configuration file.

PowerTab allows for modification of its configuration on the fly. It exposes a global
$PowerTabConfig variable that is the entry point for all configuration settings. For example,
finding out if the tab activity indicator is enabled is a matter of getting the TabActivityIndicator
property:

PS> $PowerTabConfig.TabActivityIndicator
True

Disabling the indicator is a matter of setting the property to $false:

PS> $PowerTabConfig.TabActivityIndicator = $false
PS>

That is all we need. The activity indicator will not bother us anymore. The only problem
with modifying the configuration on the fly is that it does not get persisted. The next shell
session will have the original settings. To save the configuration, we need to call the
Export-tabExpansionConfig function:

PS> Export-tabExpansionConfig
Configuration exported to C:\Users\Hristo\Documents\WindowsPowerShell\P
owerTabConfig.xml

The IntelliSense Completion Handler
PowerTab has the concept of a tab completion handler. The default one, the one we have been
using until now, is the ConsoleList handler. It is the function that knows how to draw the nice
box that contains the completion list. PowerTab ships with a PowerShell snap-in, the Lerch.
PowerShell.dll file, that provides another completion handler—the intellisense one. The
handler is named that way, because it opens a small pop-up window that looks like the Intel-
liSense pop-ups that Visual Studio .NET and other development environments use to provide
completions. The author of the snap-in is Aaron Lerch (http://www.aaronlerch.com).

To enable the intellisense handler, you first need to register the LerchSnapIn snap-in. To
do that, start PowerShell as an administrator, visit the PowerTab installation folder, and invoke
installutil.exe on the Lerch.PowerShell.dll file:

PS> cd "\Program Files\PowerTab"
C:\Program Files\PowerTab
PS> installutil .\Lerch.PowerShell.dll
Microsoft (R) .NET Framework Installation utility Version 2.0.50727.312

Copyright (c) Microsoft Corporation. All rights reserved.

...

Deshev_940-3C23.fm Page 468 Tuesday, January 22, 2008 6:46 AM

C HA P TE R 2 3 ■ E N H AN C I N G T AB C O M P L E T I O N W IT H P OW E R TA B 469

The Commit phase completed successfully.

The transacted install has completed.

Make sure that the installation completed successfully and that you do not see any errors
reported by the installutil command.

■Note The installutil.exe program is part of the .NET Framework. If it is not already available in your
system PATH, you can find the executable file inside the framework installation folder. The folder is typically
located at C:\Windows\Microsoft.NET\Framework\v2.0.50727\.

If the installation went smoothly, you need to make sure that the snap-in is always loaded
in your shell session. To do that, you have to add a call to Add-PSSnapIn to your profile script.
Open your profile script, most likely the C:\Users\<UserName>\Documents\WindowsPowerShell\
Microsoft.PowerShell_profile.ps1 file, and add the following lines before the PowerTab
initialization code:

#add the Lerch IntelliSense snap-in (needed by PowerTab)
Add-PSSnapin LerchSnapIn

The comment is not really necessary, but it will help you remember why the line is there
when you open your profile script in six months.

Now, you are ready to modify the PowerTab configuration. You need to set the DefaultHandler
property:

PS> $PowerTabConfig.DefaultHandler = 'intellisense'

That is all. Try pressing Tab for completions. You should get a small pop-up window that
looks similar to the one shown in Figure 23-8.

Figure 23-8. The intellisense completion handler showing Get-Command’s parameter list

Deshev_940-3C23.fm Page 469 Tuesday, January 22, 2008 6:46 AM

470 CH AP T E R 2 3 ■ E N HA N C IN G TA B CO M P L E T IO N WI T H P O W E R T AB

Remember to call the Export-tabExpansionConfig function; otherwise, when you restart
the shell, you will get the ConsoleList handler back.

Pressing Tab Twice

PowerTab can detect if you have quickly pressed the Tab key twice. If you do, you can bind a
different completion handler that will get invoked by setting the AlternateHandler configura-
tion property. This way, you can have the ConsoleList handler bound to the Tab key and the
intellisense one bound to double-tab. To configure that, you have to set up the handler property
and enable the double-tab functionality, which you can do by setting the DoubleTabEnabled
configuration property to $true. Here is the command that gets double-tab functionality going:

PS> $PowerTabConfig.DoubleTabEnabled = $true
PS> $PowerTabConfig.DefaultHandler = 'ConsoleList'
PS> $PowerTabConfig.AlternateHandler = 'intellisense'

Again, remember to call Export-tabExpansionConfig if you like the setting and want it
persisted for your future shell sessions.

The Tab Expansion Database
The tab expansion database is a local cache of all items that can be returned as command
completions. It can contain many types of things: by default, it contains a list of .NET types,
WMI classes, and much more. It can also contain custom entries that you can use as you like.
The first convenience use that comes to mind is to use custom completion entries as code snip-
pets. We can store a long string under a shorter key, type the key, and get the long portion back.
More than one completion can be stored under the same key—if so, when we request comple-
tions for that key, we will get a list of options instead of only one item.

Adding custom tab expansions should be done through the add-tabExpansion function. It
takes two parameters: the key and the expansion string. Let’s now use that function to create a
list of expansions serving as a favorites list. It will contain several folder paths, and we can use
it to quickly navigate to any of them. Here is the code that adds two folders to the list:

PS> add-tabExpansion fav "c:\Windows\system32\WindowsPowerShell"

Filter Text Type
------ ---- ----
fav c:\Windows\system32\... Custom

PS> add-tabExpansion fav "c:\Users\Hristo\Documents\WindowsPowerShell"

Filter Text Type
------ ---- ----
fav c:\Users\Hristo\Docu... Custom

PowerTab has a special syntax for requesting custom completions: you have to type the
name of the key followed by a caret symbol (^). To navigate quickly to a folder on our fav list,

Deshev_940-3C23.fm Page 470 Tuesday, January 22, 2008 6:46 AM

C HA P TE R 2 3 ■ E N H AN C I N G T AB C O M P L E T I O N W IT H P OW E R TA B 471

type cd fav^[tab], and select the item from the pop-up list. The result should look similar to the
one shown in Figure 23-9.

Figure 23-9. PowerTab displaying custom completions.

Just like when changing the $PowerTabConfiguration object, changes to the tab expansion
database are not persisted across shell sessions. We need to explicitly save the modified tab
expansion settings. To do that, we have to call the Export-tabExpansionDataBase function:

PS> Export-tabExpansionDataBase
Tabexpansion database exported to C:\Users\Hristo\Documents\WindowsPowe
rShell\TabExpansion.xml
PS>

Now, we can rest assured that our fav completion list will be available in all shell sessions.

Summary
PowerTab is a really great tool. Every day, I continue to be amazed at the sheer number of tab
completion scenarios that it covers. The tool saves a lot of typing and can help you get productivity
levels you have not dreamt were possible. I have noticed a strange thing happening to me—
I use tab completions more and more as an exploration tool. It is not uncommon for me to spot
classes and objects that I had not previously suspected even existed in a completion list, and
thus discover a new cool feature that I can use in my work.

I bet that after half an hour of using PowerTab, you will never want to go back to the regular
PowerShell tab expansion mechanism. Try it—you will not be sorry.

This chapter concludes our PowerShell adventure. We started by exploring the shell intrica-
cies and went beyond simple commands to help you attain a profound understanding of how
the shell components really work. We then went on to employ various programming techniques
that use .NET, COM, and WMI objects to help us interact with the operating system and the
network. Finally, I covered the most important, freely available, tools, which can immensely
increase productivity. The techniques and tools described in the book are guaranteed to make
you a better scripter. Use them!

Deshev_940-3C23.fm Page 471 Tuesday, January 22, 2008 6:46 AM

473

Index

■Numbers and symbols
% alias, 124

$() block, 12

@() block, 17

<= indicator, 66

=> indicator, 66

! operator, 38–39

< operator, 34, 60

> operator, 34, 60, 170, 289

>> operator, 34, 289

+= operator, 77

$_ variable, 59, 61, 77, 163

`a (alert) symbol, 9

& (ampersand) symbol, 70, 82

* (asterisk) symbol, 13, 400

` (backtick) symbol, 9–10

^ (caret) symbol, 470

`r (carriage return) symbol, 10

{} (curly braces), 69

$ (dollar sign), 12, 64, 79

. (dot) symbol, 13, 146, 148

`f (form feed) symbol, 9

`t (horizontal tab) symbol, 10

`n (line feed) symbol, 10

`0 (null) symbol, 9

`f (page break) symbol, 9

+ (plus sign), 20, 71

(pound sign), 16

? (question mark), 57, 124

2> redirection operator, 170

`v (vertical tab) symbol, 10

■A
$a statement, 35

absolute paths, 398, 402

Accept-Encoding header, 322

access control list (ACL), 63, 137, 245

AccessToString property, 246

Activator class, 368

Active Directory

converting strings to entries, 30

deleting users from, 446

manipulating, 443–446

add_Click() method, 86

AddCode() method, 390

Add-Content cmdlet, 136, 254, 288–289

Add-EventHandler cmdlet, 458

Add-Field function, 241

Add-Member cmdlet, 238, 244

Add-Method function, 242

Add-Property function, 242

Add-PSSnapIn cmdlet, 226–227, 450, 469

add-tabExpansion function, 470

administrator user privileges, 141

advanced pager application, 446

alert symbol (`a), 9

alias properties, 6

Alias provider, 109–110

aliases. See command aliases

AliasProperty, 239

AllSigned policy level, 141, 211

AlternateHandler configuration property, 470

American Standard Code for Information
Interchange (ASCII), 289

AML. See Assistive Markup Language

Deshev_940-3INDEX.fm Page 473 Tuesday, January 29, 2008 7:30 AM

474 ■IN D E X

ampersand (&) symbol, 70, 82

-and operator, 37

Application command type, 265

Application event log, 303

applications, shells embedded in, 219. See
also specific applications

$args collection, 77, 142

$args variable, 73, 142–243

ArgumentException errors, 175

ArgumentNullException error, 175

arrays, 16–21

Count property and, 6

creation syntax, 18

empty, 17

returning, 73

searching, 20–21

slices, 18

type conversions to, 28

-as parameter, 114

AssemblyCache provider, 440–441

Assistive Markup Language (AML), 258–262

asString parameter, 63

asterisk (*), 13, 400

Asymmetric encryption algorithms, 198

Atom feeds, 333–336

audit logs, 63

authentication, accessing resources
requiring, 324–328

Authorization header, 327–328

awk command, 56

■B
backspace (`b) , 9

backtick (`) symbol, 9–10

backward compatibility, 56

-band operator, 38–40

base64 encryption, 327

begin block, 76–77, 97

begin parameter, 59

BigEndianUnicode encoding, 292

binary objects, turning into formatted
text, 237

binary operations, 38–40

Bitmap objects, 436

bitwise operations, 37–43

blind copies, 353

blocks, scope of, 83

BOM sequences, 293

Boolean conversions, 28, 41–42

-bor operator, 38–40

bracket notation, 18

branching instructions

if/else, 44–45

switch statement, 45–48

break statement, 46, 51–53, 162–167

breakpoints, simulating, 189–190

built-in types, 8–24

arrays, 16–21

conversions, 21

dictionaries, 21–24

hash tables, 21–24

numeric, 14–16

strings, 8–14

byte arrays, 290–291

■C
caret symbol (^), 470

carriage return symbol (`r), 10

case-insensitive operators, 36

case-sensitive comparisons, 35–36

-casesensitive switch, 46

cd command, 132–133, 421–422

Cells property, 378

Certificate provider, 128

certificates

adding to Trusted Publishers store, 212

creating CA, 202–206

creating self-signed, 202–209

exporting, 209, 215

importing, 216

Deshev_940-3INDEX.fm Page 474 Tuesday, January 29, 2008 7:30 AM

475■I N D E X

issuing code-signing, 206–209

managing, 199–202

certification authorities (CAs), 198–199

character arrays, converting strings to, 29

character casing, 35

checksums, 198

*.chm files, 258

CIM Query Language, 398

CIM-XML protocol, 397

class ID (CLSID), 368

__CLASS property, 406

classes

abstraction of, 240

adding members to all instances of,
244–247

See also specific classes

Clear-Content cmdlet, 136

Clear-Host cmdlet, 222

Clear-Item cmdlet, 134

Clear-ItemProperty cmdlet, 136

click() method, 387

-clike operator, 47

clip.exe, 437

clipboard helpers, 437–440

CloseMainWindow method, 277

-cmatch operator, 47

cmd.exe, 140

drive navigation and, 132–133

script execution and, 148–149

CMD.EXE compatibility aliases, 119–121

cmdlets, 56–58, 107. See also specific cmdlets

code debugging. See debugging

code signing, 197–199

CodeObject property, 392

CodePlex, 417, 449

code-signing certificate, issuing, 206–209

collections, 16–21

conditional expressions and, 43–44

Count property of, 6

executing actions on all objects in, 50–51

filtering, using Where-Object, 60

gathering statistics, 65

grouping, 64

processing, using ForEach-Object cmdlet,
59–60

searching, 20–21

sorting, 62–63

switch statement with, 47

COM. See Component Object Model

COM objects

built-in adapter for, 369

creating, 368–369

monikers for, 369

using, 368

WMI objects as, 395

wrappers, 368

ComAdapter, 5

command aliases, 107

built-in, 119–125

cmd.exe compatible, 119–121

complex, 117–118

convenience, 119, 123–124

creating, 108–109

deleting, 111

exporting and importing, 111–114

introduction to, 107

modifying, 110–111

name clashes, 115–117

persisting, for all shell sessions, 115

pitfalls of, 115

redefining default, 113

removing broken, 118–119

tips and techniques, 115–119

UNIX shell compatibility, 119–122

working with, 107–115

command completion, 231–235, 465

command tracing, 193–196

CommandInfo object, 152

Deshev_940-3INDEX.fm Page 475 Tuesday, January 29, 2008 7:30 AM

476 ■IN D E X

commands

accessing information, 264–266

acting on objects (cmdlets), 56–59

chaining, 55, 66

combining simple, 66

dot-sourcing, 82–83

executing, 427–429

helper, 56

output from, 55

parsing problems, 56

PowerShell versus UNIX, 122

running from shell, 55

separating by function, 55

CommandType property, 89

commas, 73

comma-separated files, exported objects
to, 382

Common Information Model (CIM), 396–397

Compare-Object cmdlet, 58, 65–66

comparison operators, 34–36

compiled HTML help files, 258

Component Object Model (COM)

automation interfaces with, 369–388

Internet Explorer, 384–388

Microsoft Excel, 378–383

Microsoft Word, 369–378

interfaces, 368

introduction to, 367

PowerShell support for, 368–369

workings of, 368

See also COM objects

-Computer parameter, 301

concatenation, 20

conditional branches, 33

conditional expressions, 33–44

Boolean conversions, 41–42

collections and, 43–44

defined, 33

implicit type conversions, 36–37

logic and bitwise operations, 37–40

string conversions, 42–43

value expressions, 34–36

configuration code, saving in profile script,
223–225

Connect-EventListener, 451

connection options

debugging, 318–327

setting, 318–327

console applications, 219

console settings, working with saved,
226–228

ConsoleList handler, 468

consuming events, 449

-contains, 24

Contains() method, 24

ContainsKey() method, 24

ContainsValue() method, 24

content

encoding, 289–294

reading, 285–287

working with byte arrays, 290–291

writing, 288–289

$contents variable, 316

continue statement, 51–53, 161–162

contracts, 368

control flow, 33

control structures, implementing new,
101–104

Control-C event, 457

convenience aliases, 119, 123–124

conversion errors, 160–161

Convert-Xml cmdlet, 433–434

Copy-Item cmdlet, 135

Copy-ItemProperty cmdlet, 137

Count property, 6–7

Count-Characters function, 183, 186–188

counter data, 307–309

counters, for loops, 50

Create() method, 240–241

Deshev_940-3INDEX.fm Page 476 Tuesday, January 29, 2008 7:30 AM

477■I N D E X

CreateInstance() method, 368

Create-Message function, 351–353

Credential ability, 128

Culture parameter, 63

cURL, 316

curly braces {}, 69

currency, 16

custom objects, creating, 240–244

■D
data

counter, 307–309

formats, 285

performance, 306

data collections. See collections

data extraction, from text, 294–296

DataRowAdapter, 4

DataRowViewAdapter, 5

DCOM (Distributed COM), 367, 397

Debug parameter, 157, 160, 183

$DebugPreference variable, 183, 185

debugging, 177–196

command tracing, 193–196

generating diagnostic messages, 183–185

generating warnings, 186–187

print, 178–187

simulating breakpoints, 189–190

stepping through scripts, 188–190

tracing script execution details, 190–196

decimal numbers, 15

DefaultHandler property, 469

Define-Class function, 240

Definition property, 89, 266

delegates, script blocks as, 85–86

DependentServices property, 283

__DERIVATION property, 406

diagnostic messages, 297

color-coding, 178

generating, 183–185

verbose, 180–183

warnings, 186–187

See also event logs

dictionaries, 21–24

diff command, 58

dir command, 93, 120, 444

directory junctions, 422–423

DirectoryEntryAdapter, 4

DirectoryServices provider, 443–446

Disconnect-EventListener cmdlet, 451

Distributed COM (DCOM), 367, 397

DivideByZeroException, 164

DNS names, resolving, 426

document object model (DOM)
programming interface, 387–388

Document Paragraphs collection, 371

Document.Content range, 373

Documents collection, 370

Documents.Add() method, 374

Do-Events cmdlet, 459

dollar sign ($), 12, 64, 79

dollar-sign expressions, 11

domain controller, 425

doskey.exe, 107

dot (.) symbol, 13, 146

dot notation, 2, 22

dot-sourcing

commands, 82–83

script libraries and, 150

scripts, 146

double negation, 42

double quotes, 9

DoubleTabEnabled configuration
property, 470

do-until loops, 49

do-while loops, 49, 457

DownloadFile method, 318, 345

DownloadString method, 316

drive providers, 134

Deshev_940-3INDEX.fm Page 477 Tuesday, January 29, 2008 7:30 AM

478 ■IN D E X

drives

creating new, 129

listing, 407

mapping network shares as local, 130

navigating to, 132–133

removing mapped, 131

scope of, 131–132

dynamic item property providers, 137

dynamic object generation, 392

__DYNASTY property, 406

■E
EchoArgs program, 447

Edit-File function, 418

$EDITOR global variable, 418

EDSAC computer, 87

elevate function, 429

elevated privileges, 429

else statement, 44, 45

elseif statement, 45

e-mail

attachments, 359–361

configuring recipients, 352–354

embedding media files in, 361–362

final script, 363–364

message headers, 355–357

message views, 357–359

multipart messages, 357–363

.NET framework support for, 349–350

read receipts, 356

reusable script for, 350–352

System.Net.Mail, 349–350

embedded expressions, 12

empty arrays, 17

encoding

files, 289–294

Unicode, 291–294

UTF-8, 292

-Encoding parameter, 289–294

encryption, 198–199

end block, 76–77, 97

end parameter, 59

EnterNestedPrompt method, 189

EntryWritten event, 452

-eq (equal) switch, 34, 46

$Error variable, 170–172

error handling, 56

break statement for, 162–167

catching unknown or all, 163–168

common parameters, 157–160

error suppression, 161–162

introduction to, 155–157

interpreting error messages, 297

nonterminating errors, 170–172

parameters and, 74

parse errors, 169–170

passing up, 166

syntax errors, 169–170

trapping errors, 160–163

untrappable errors, 169–170

error pipeline redirection, 170–171

error reports, for scripts, 167–168

error signaling, for scripts, 149

ErrorAction parameter, 157–158

ERRORLEVEL global variable, 149

ErrorRecord, for nonterminating errors, 170

errors

common, 447–448

ignoring, 102

raising, 172–177

nonterminating, 175–177

terminating, 172–175

See also error handling

ErrorVariable parameter, 157–160, 170

eval function, 83

Eval() method, 390–391

event handling

example, 451–452

with PSEventing, 450–451

script blocks for, 457–459

Deshev_940-3INDEX.fm Page 478 Tuesday, January 29, 2008 7:30 AM

479■I N D E X

event logs, 297

accessing remote, 301–302

Application, 303

default, 298

event IDs, 300–301

listing, 298

security settings, 300

system, 452–454

Windows, 297–305

reading, 298–302

writing to, 302–305

event queues, 450

event source, 303

eventhandler.ps1 script, 458

EventLog class, 303

events, 369, 449. See also PSEventing

$ExecutionContext variable, 84

$ExecutionContext.InvokeCommand
object, 84

Excel. See Microsoft Excel

Excel.Application ProgID, 378

Exception property, 160, 164

exchangeable image file format (EXIF)
metadata, 436

Exclude ability, 129

exclusive or operator (-xor), 38

execution flow

branching instructions for, 44–48

loops, 48–53

execution policy levels, 140–141

exit statement, 147

ExpandWildCards ability, 128

Export-Alias cmdlet, 112, 228

Export-Bitmap cmdlet, 436

Export-CliXml cmdlet, 167

Export-Console cmdlet, 227

Export-Csv cmdlet, 382

Export-tabExpansionDataBase function, 471

expressions

evaluation of, 169

invoking strings as, 83–84

script blocks and, 71–75

extended type system

configuration of, 245

external objects and, 239

object formatting, 247–251

PSObject type and, 237

external objects, extending, 239

external programs, working with, 316

$extraHeaders parameter, 357

■F
-f string operator, 16

Feed drive, 441

Fiddler, 319–323

file attributes, 39–40

file compression, 424–425

file delete error, 156

file formats, 285

-file switch, 48

file system abstraction, 444

file system utilities, 421–425

compressing and archiving files, 424–425

navigation support, 421–422

NTFS helpers, 422–424

FileInfo objects, 438

files

archiving, 424–425

downloading from FTP server, 345–346

encoding, 289–294

finding string occurrences in, 295–296

reading content of, 285–287

saving downloaded, 317–318

uploading to FTP server, 346–347

working with byte arrays, 290–291

writing to, 288–289

FileSystem provider, 127

Deshev_940-3INDEX.fm Page 479 Tuesday, January 29, 2008 7:30 AM

480 ■IN D E X

FileSystem.format.ps1xml file, 250

FileSystemWatcher object, 449, 451–452

Filter ability, 129

filter keyword, 98

FilterInfo object, 100

filters, 97–101

findstr command, 56

first parameter, 61

flag enumerations, 39, 43

floating point numbers, 15

flow control loops, 48–53

for loops, 50, 101

for operator, 59

-Force parameter, 16

foreach cmdlet, 57, 331, 352

foreach loops, 50–52

ForEach-Object cmdlet, 57, 59–60, 75

form feed symbol (`f), 9

Format-* commands, 7

Format-Custom cmdlet, 249

Format-List cmdlet, 248, 388, 459

Format-Table cmdlet, 248

formatting cmdlets, 247–249

formatting strings, 12

Format-Wide cmdlet, 248

Format-Xml cmdlet, 430–431

FTP transactions, 345–347

FullyQualifiedErrorId property, 160, 164

function keyword, 87

functional programming, 66–67

FunctionInfo object, 100

functions

calling, 88

concept of, 87

defining, 87–97

filter, 97–101

internals, 88–89

names, 87

nesting, 94

parameters, 89–92

pipelines and, 97–101

returning values, 93–94

scope, 95

scope rules, 94–97

script blocks and, 101–106

syntax for calling, 90

See also specific functions

■G
Gac drive, 440

-ge (greater-than-or-equal) switch, 35

__GENUS property, 406

GET requests, calling web services with,
338–340

Get-Acl cmdlet, 137, 245

Get-Alias cmdlet, 108–109, 193

GetAttribute() method, 106

Get-AuthenticodeSignature, 212

Get-ChildItem cmdlet, 135, 191–193

Get-Clipboard cmdlet, 437–439

Get-Command cmdlet, 88, 99, 109, 235,
264–266

Get-Content cmdlet, 263, 285–287, 391

Get-DhcpServer cmdlet, 425–426

Get-DocumentText.ps1 script, 371

Get-DocumentWords.ps1 script, 373

Get-DomainController cmdlet, 425–426

getElementById() method, 387

getElementsByTagName() method, 388

Get-Event cmdlet, 451–452, 457

Get-EventBinding cmdlet, 451

Get-EventLog cmdlet, 298–303

Get-ExecutionPolicy cmdlet, 140

Get-Help cmdlet, 253–256

advanced techniques, 259

parameter details, 256–257

Get-HelpMatch function, 421

Get-Host cmdlet, 220

Get-Item cmdlet, 134

Get-ItemProperty cmdlet, 136, 444

Get-LibraryPath function, 153

Deshev_940-3INDEX.fm Page 480 Tuesday, January 29, 2008 7:30 AM

481■I N D E X

Get-Location cmdlet, 228

Get-Member cmdlet, 7, 266–268

Get-PfxCertificate cmdlet, 213

Get-Process cmdlet, 34, 60, 64, 275–278,
383, 429

Get-PscxAlias function, 419

Get-PscxCmdlet, 419

Get-PscxDrive cmdlet, 420

Get-PscxVariable cmdlet, 420

Get-PSDrive cmdlet, 129

Get-PSProvider cmdlet, 127

Get-PSSnapIn cmdlet, 226, 450

GetResponse method, 329

Get-ScriptDirectory function, 152

Get-Service cmdlet, 281

GetSpellingSuggestions() method, 377

Get-TabExpansion cmdlet, 418

GetType() method, 1–2

GetTypeFromProgID() method, 368

Get-Unique cmdlet, 63

Get-Url cmdlet, 427

Get-Variable cmdlet, 79–80, 91, 152, 183

Get-WmiObject cmdlet, 301, 399–404, 410

global error traps, 167–168

global event queue, 450

global feed store, Internet Explorer, 441–443

global functions, for configuring shell, 228

global scope, 80–81

$global variable, 81

globally unique identifier (GUID), 368

Google search, 271

grep command, 56

group, 58

GroupBy property, 251

GroupInfo objects, 64

Group-Object cmdlet, 58, 64–65

-gt (greater-than) switch, 34

GUID (globally unique identifier), 368

■H
hard links, 422–423

hardware devices, querying, 407–408

hash functions, 198

hash tables, 21–24, 28

Hashtable class, 28

HEAD request, 328–329

$Headers parameter, 323

help, using Internet to access, 268–273

help command, 254–256, 446

help system, 253–264

helper commands, 56

hexadecimal numbers, 15–16, 40

horizontal tab symbol (`t), 10

$host global variable, 220

host object, 220

$host.UI property, 220

$host.UI.WriteLine() method, 221

HotFixID property, 409

HTTP Basic authentication, 327–328

HTTP POST request, 384

HTTP (Hypertext Transfer Protocol), 315

authentication mechanisms, 324–328

calling web services, with POST requests,
340–342

downloading files with, 316–318

GET requests, calling web services with,
338–340

HEAD request, 328–329

proxy servers and, 318–327

request headers, 322–323

■I
IConvertible .NET interface, 27

IDictionary objects, 28

if/else branches, 44, 45

ignore function, 102

image files, 435–437

ImageMagick, 435

images, viewing downloaded, 317

Deshev_940-3INDEX.fm Page 481 Tuesday, January 29, 2008 7:30 AM

482 ■IN D E X

ImplementingType property, 128

implicit type conversions, 36–37

Import-Alias cmdlet, 112–113, 228

Import-Bitmap cmdlet, 435–436, 439

Import-CliXml cmdlet, 168

Include ability, 129

-includeEqual diff option, 279

InnerException property, 161, 164

Installer class, 450

installutil command, 469

$instance value, 240

Instrument-Function cmdlet, 182

IntelliSense completion handler, 468–470

Internet, accessing help on, 268–273

Internet Explorer

automating, with COM, 384–388

extracting data from DOM tree, 387–388

scripting browser session, 384–387

global feed store, 441–443

protected mode, 385

InternetExplorer.Application ProgID, 384

InvocationInfo object, 160

invoke operator (&), 70

Invoke() method, 70, 85

InvokeCommand property, 84

Invoke-Expression cmdlet, 83–84, 89

Invoke-Item cmdlet, 135, 317

InvokeReturnAsIs method, 70

ISA operator, 403

IsFilter property, 101

item container providers, 135–136

item content providers, 136

item property providers, 136

item providers, 134–135

item security descriptor providers, 137

items, 127

■J
Join-Path cmdlet, 136, 153, 318

■L
language differences, in sorting, 63

last parameter, 61

-le (less-than-or-equal-to) switch, 35

LerchSnapIn snap-in, 468

less pager, 446–447

libraries

processes and, 279

problems with paths, 150–153

Lib-User-DotSource.ps1, 150

-like operator, 42–43, 47

line feed symbol (`n), 10

LinkedResource objects, 361

-List cmdlet switch, 298

Little Endian ordering, 292

Live.com search, 272

local scope, 81

local variables, 82, 91

logging, 63. See also event logs

logic operations, 37–40

logic operators

! operator, 38–39

-and operator, 37

-not operator, 38–39

-or operator, 37

-xor operator, 38

logical drives, 407

-LogName parameter, 299

loop function, 102

loops, 48–53

controlling execution of, 51–53

do-until, 49

do-while, 49

for, 50

foreach, 50–52

while, 48–49, 101

-lt (less-than) switch, 33–34

Deshev_940-3INDEX.fm Page 482 Tuesday, January 29, 2008 7:30 AM

483■I N D E X

■M
machine-parsable output, 55

macro recording, 378

MailAttachment objects, 360

MailMessage class, 349, 355

MainModule property, 279

MainWindowTitle property, 278

makecert.exe tool, 202–209, 215

MAML (Microsoft Assistive Markup
Language), 258

MamlCommandHelpInfo objects, 259

ManagementEventWatcher class, 454–455

ManagementObjectAdapter class, 3

mandatory parameters, 75

-match operator, 13, 42–43, 47

Matches() method, 294

$MaximumErrorCount variable, 171

Measure-Object cmdlet, 58, 65

media files, embedding in e-mail messages,
361–362

member sets, 7

member types, 238

members, adding to all instances of class,
244–247

-MemberType parameter, 238

memory leaks, detecting, 309–310

message headers, 355–357

message read receipts, 355

message views, 357

meta_class WMI class, 403–406

methods, 1. See also specific methods

Microsoft Assistive Markup Language
(MAML), 258

Microsoft Developer Network (MSDN) web
site, 268–271

Microsoft Excel, automating, 378–383

exiting, 380

modifying workbook content, 382–383

reading cell values from document,
378–381

Microsoft Word, automating, 369–378

creating and modifying documents,
373–376

help resources, 377–378

opening documents and extracting text,
370–373

using spell checker, 376–377

viewing application window, 376

Microsoft.PowerShell.Core snap-in, 128

MIME (Multipurpose Internet Mail
Extensions), 357

Modify-Name function scope, 145

Modules collection, 279

modulo operator (%), 52

Monadism, 66

monikers, 369, 398

mount command, 122

Move-Item cmdlet, 136

Move-ItemProperty cmdlet, 137

MSScriptControl COM object, 389–392

MSScriptControl.ScriptControl ProgID, 389

multiple branches, switch statement and,
45–48

Multipurpose Internet Mail Extensions
(MIME), 357

$MyInvocation variable, 152

■N
$name variable, 145

named parameters, 73

__NAMESPACE property, 406

navigation providers, 136

navigation support, 421–422

-ne (not-equal) switch, 34

negative indexes, 19

nested error traps, 165–166

nested scopes, 84

.NET 3.0, 367

.NET framework, 1

class names, completing with
PowerTab, 463

COM support in, 368

Deshev_940-3INDEX.fm Page 483 Tuesday, January 29, 2008 7:30 AM

484 ■IN D E X

e-mail support, 349–350

event handling in, 85, 450–451

HTPP protocol and, 315–316

object interoperability and, 367

See also specific classes

.NET global assembly cache, reading from,
440–441

.NET objects

commands as, 56

control of, 449

creating, 369

strings pointing to, 30

wrappers, 380

.NET Remoting infrastructure, 367

network adapters, 411

network configuration, WMI and, 411

network drives, mapped, 407

network shares, mapping as local drives, 130

network utilities, 425–427

NetworkCredential object, 325, 350

new keyword, 241

New() constructor method, 241

New-Alias cmdlet, 108

-Newest parameter, 299

New-HardLink cmdlet, 422

New-Item cmdlet, 135, 442

New-ItemProperty cmdlet, 137

New-Junction cmdlet, 423

New-Object cmdlet, 174, 369

New-PSDrive cmdlet, 122

news feeds, 332–337

NextValue() method, 307

None ability, 129

nonempty values, 41

nonterminating errors, 155–156, 170–172,
175–177

-not operator, 38–39

note properties, 7, 241

Notepad++, 139

notepad.exe, 419

NoteProperty, 239

NTFS file system, 422–424

NTLM (NT LAN Manager)
authentication, 324

$null values, 42, 74

null symbol (`0), 9

numeric range notation, 17

numeric types, 14–16

decimal numbers, 15

floating-point numbers, 15

hexadecimal numbers, 15–16

as strings, 16

System.Int32, 14

■O
object adapters, 3–5

object discovery, 397–398

object formatting, extending, 247–251

object members, 2

object methods

completing with PowerTab, 464

using, 2–3

See also specific methods

object notation, 22

object paths, 402

object properties

accessing, 2

adding or deleting, 60–62

object queries, 398–400

object types

accessing, 1–2

aliases, 25

built-in, 8–24

arrays, 16–21

dictionaries, 21–24

hash tables, 21–24

numeric, 14–16

strings, 8–14

configuration, 245–247

defining properties for, 244–247

Deshev_940-3INDEX.fm Page 484 Tuesday, January 29, 2008 7:30 AM

485■I N D E X

implicit type conversions, 36–37

modifying, 237–247

type conversion, 26–30, 36–37

type extensions, 5–8, 239

type literals, 25–30, 402

object views, extended, 6

object-based pipelines, 56–59, 238

advantages of, 56

functional programming and, 66–67

objects

accessing information about, 266–268

adding members to single, 238–240

comparing, 65–66

creating new, 240–244

extending external, 239

grouping, 64–65

introduction to, 1

modifying, 237–247

paths, 398

piping, 238

sorting collections of, 62–63

storing, 63–64

views, 8

operating system (OS)

querying, with WMI, 408–411

updates, 408–409

operating-specific tracing, 193–196

operations, used in expressions, 71

-or operator, 37

Out-Clipboard cmdlet, 439

out-dataGridView function, 467

Out-Default cmdlet, 94

Out-String cmdlet, 439

■P
page break symbol (`f), 9

param statement, 73–74, 142

parameter names, 73, 257

-parameter parameter, 256–257

parameters

accessing by index, 73

converting, 74

default values, 75, 90

error handling, 157–160

extracting, for methods and property
setters, 243

function, 89–92

mandatory, 75

missing, 74

named, 73

passing, 71–77, 142–447

types of, 74

parent scopes, 78

parentheses, 71, 77

parse errors, 169–170

Parse() method, 27, 30

parse-time optimizations, 169

partitions, 407

password-protected pages, accessing,
324–327

PATH environment variable, 140

-Path parameter, 295

__PATH property, 406

path specifier, 140

-Pattern parameter, 295

percentage format, 16

performance counters, 297, 306–313

performance data, 306

Performance Monitor Users group, 307–308

ping utility, 426

Ping-Host cmdlet, 426

pipeline trees, 63–64

pipelines

advantages of, 55

function, 97–101

object-based, 56–59, 238

processing input, 75–83

scope and, 83

text-based, 55–56

Deshev_940-3INDEX.fm Page 485 Tuesday, January 29, 2008 7:30 AM

486 ■IN D E X

plus sign (+) operator, 20, 71

POST requests, calling web services with,
340–342

pound sign (#), 16

PowerShell

COM support in, 368–369

executing scripts from other
environments, 148–149

flexible type system, 1–8

help system, 253–264

object orientation, 253

object-based pipelines in, 56–59

script code interoperability, 389–392

snap-ins, 226–228

type conversion in, 26–30

WMI support, 398–400

PowerShell Community Extensions
(PSCX), 410

AssemblyCache provider, 440–441

clipboard helpers, 437–440

DirectoryServices provider, 443–446

feed provider, 441–443

file system utilities, 421–425

compressing and archiving files,
424–425

navigation support, 421–422

NTFS helpers, 422–424

helper functions, 419–421

image files, 435–437

installation and configuration, 417–421

introduction to, 417

network utilities, 425–427

process and command execution, 427–429

tab expansion, 418

utility applications, 446–448

XML tools, 430–434

PowerShell drives. See drives

powershell.exe, 219–223

PowerTab

configuring, 462, 467–468

custom completions, 471

data grid pop-up windows, 466–467

installation, 462–463

introduction to, 461

pressing Tab twice in, 470

tab completion handler, 468–470

tab expansion database, 470–471

workings of, 463–467

PowerTabConfig.xml file, 462, 467–468

-PrependPath parameter, 246

print debugging, 178–187

generating debug output, 183–185

generating warnings, 186–187

verbose output, 180–183

PriorityClass property, 280

Private Bytes performance counter, 309

private keys, 198–199, 203

private scope, 81

process block, 76–77

process modules, 279–280

Process object, 7

process parameter, 60

process section, 97–99

Process type, 6

Process.Start() static method, 277

processes

executing, 427–429

introduction to, 275

listing, 276

priority setting, 280–281

publisher information, 280

starting and stopping, 277–278

windows, 278–279

working with, 275–278

profile scripts, 223–225, 419

program ID string (ProgID), 368

Deshev_940-3INDEX.fm Page 486 Tuesday, January 29, 2008 7:30 AM

487■I N D E X

programs

automating with COM, 369–388

Internet Explorer, 384–388

Microsoft Excel, 378–383

Microsoft Word, 369–378

branching instructions, 44–48

installed, 409–410

monitoring, 309–313

detecting memory leaks, 309–310

hung programs, 310–312

unexpected exits, 312–313

prompt function, 228–231

prompt settings, changing, 228–231

properties

adding or deleting, 60–62

defining for object types, 244–247

__PROPERTY_COUNT property, 406

property sets, 247

property types, 239

PropertySet element, 246–247

provider capabilities, 128–129, 134–137

provider-qualified paths, 133–134

providers

drives for, 129–132, 134

dynamic item property, 137

enumerating, 127–129

item, 127, 134–135

item container, 135–136

item content, 136

item property, 136

item security descriptor, 137

navigation, 136

proxy servers

debugging, 319–320

working with, 318–327

.ps1 file extension, 139

PSAdapted view, 8

PSBase property, 3–4, 105

PSBase view, 8

PSConfiguration view, 7

PSCX. See PowerShell Community
Extensions

$PscxTextEditorPreference variable, 420

PSEventing snap-in, 226, 301

detecting script termination, 456–457

event-handling mechanics, 450–451

example, 451–452

handling WMI events, 454–456

introduction to, 449–450

monitoring system event logs, 452–454

using script blocks as event handlers,
457–459

PSExtended property, 6–7

PSExtended view, 8

PSHostRawUserInterface object, 221

PSHostUserInterface object, 220–221

PSInvalidCastException object, 161, 164

PSMemberSet object, 7

PSObject type, 3, 27, 237

adding properties and methods to, 238

creating instances of, 240–244

object operations and, 239

PSObject view, 8

PSParentPath property, 251

PSReference object, 92

PSResources view, 7

PSSnapIn class, 450

PSSnapInInstaller class, 450

PSTypeConverter class, 27

PSVariable object, 79

public key infrastructure (PKI), 199

public keys, 198–199

■Q
query languages, 398

Quit() method, 380

quotation marks, 9

Deshev_940-3INDEX.fm Page 487 Tuesday, January 29, 2008 7:30 AM

488 ■IN D E X

■R
Raise-NonTerminatingError function, 156

Raise-TerminatingError function, 156–157

raising errors, 156–157, 172–177

Range objects, 370–375, 378

Range() method, 381

raw user interface object, 221

RecordNumber property, 302

redirection operator, 170

reference values, in functions, 92

-regex switch, 47

Regex.Replace() method, 14

regular expression matching, 13–14

regular expressions, 29, 56, 294–296

relative paths, 398, 402

Reliability and Performance Monitor,
306–307, 311

__RELPATH property, 406

remote events, event log for, 301–302

RemoteSigned policy level, 141

Remove() method, 23

Remove-Item cmdlet, 111, 135

Remove-ItemProperty cmdlet, 137

Remove-Junction cmdlet, 423

Remove-PSDrive cmdlet, 131

Remove-ReparsePoint cmdlet, 423–424

Rename-Item cmdlet, 135

Rename-ItemProperty cmdlet, 137

reparse points, 423

-replace operator, 14

request headers, 322–323

Resize-Bitmap cmdlet, 436

Resolve-Host cmdlet, 426

Resolve-Path cmdlet, 135

Resource Description Framework (RDF), 332

resources, authenticating, 324–328

Responding property, 278

Restart-Service cmdlet, 282

Restricted policy level, 140–141

Resume-Service cmdlet, 282

return statement, 72, 93, 147

rows, selecting, 61

RSS feeds, 332–337, 441–443

RSS file formats, 332

Run() method, 390–391

running objects table, 369

RuntimeException error, 164

■S
scientific notation, 16

scope

drive, 131–132

functions and, 94–97

global, 80

parent, 78

prefixes, 81–82

variable, 77–83, 144–145

scope namespace prefixes, 96

-scope parameter, 80, 145

script blocks, 59, 87, 263

advantages of, 69

defining, 69–71

as delegates, 85–86

evaluating, 390–391

as event handlers, 457–459

executing, 70–71

functions and, 67, 101–106

invoking, 70

in object pipeline, 66

passing parameters, 71–77

processing pipeline input, 75–83

queries, 263

returning values, 71–75

as strategies, 104–106

type conversions, 29

variable scope and, 77–83

variables, 69

See also scripts

script control object, 389–392

Deshev_940-3INDEX.fm Page 488 Tuesday, January 29, 2008 7:30 AM

489■I N D E X

script global scope, 145

script libraries

developing and maintaining, 149–153

dot-sourcing and, 150

library path problem, 150–153

Script properties, 7

script publisher, trusting a, 212

script scope prefix, 81, 145

ScriptBlock property, 89, 101

ScriptMethod type, 239

Scriptomatic tool, 412–414

ScriptProperty, 239

scripts

building reusable, 350–352

certifying origin of, 198–199

creating, 139–140

detecting termination, 456–457

dot-sourcing, 146

error signaling, 149

execution policy levels, 140–141

exiting, 147–149

global error traps in, 167–168

integrity of, 198

interoperability, 389–392

introduction to, 139

invoking, 140–141

passing parameters, 142–146

PowerShell, executing from other
environments, 148–149

returning values, 146–147

running on other machines, 215–216

signing, 197–199, 211–215

simulating breakpoints, 189–190

stepping through, 188–190

tracing execution details, 190–196

variables in, 144–146

search strategy, with script blocks, 105–106

Search-Google function, 271

Search-LiveCom function, 272

Search-Msdn function, 270

secure-by-default building principle, 140

Security log, 300

sed command, 56

select, 57

SELECT clause, 60

Select-Object cmdlet, 57, 60–62

Select-String cmdlet, 295–296

Select-Xml cmdlet, 433

self-signed certificates, 202–209, 215

semicolons, 73

Send-Message function, 351

__SERVER property, 406

services

administering, 281–283

analyzing dependencies, 283

configuring, 283

introduction to, 275

starting and stopping, 282

ServicesDependedOn property, 283

Set-Acl cmdlet, 137

Set-Alias cmdlet, 110, 114

Set-Attachments function, 360

Set-AuthenticodeSignature cmdlet, 211

Set-Clipboard cmdlet, 439

Set-Content cmdlet, 111, 136, 139,
288–290, 317

Set-ExecutionPolicy cmdlet, 141, 211

Set-FileTime cmdlet, 419

Set-Headers function, 355–356

Set-Item cmdlet, 110, 135

Set-ItemProperty cmdlet, 136

Set-LinkedResources function, 361–362

Set-Location cmdlet, 132–133

Set-MultiPartBodies function, 358

Set-PSDebug cmdlet, 188–190

Set-Service cmdlet, 283

Set-Variable cmdlet, 79–80, 91, 145

shell environment

Deshev_940-3INDEX.fm Page 489 Tuesday, January 29, 2008 7:30 AM

490 ■IN D E X

command completion, 231–235

configuring, 221–223

primary function of, 55

prompt settings, 228–231

user profile scripts, 223–225

working with snap-ins, 226–228

See also PowerShell

shell hosts, 219–223

shell operations, tracing, 190–193

ShouldProcess method, 129

Show-MsdnHelp function, 271

Simple Network Management Protocol
(SNMP), 395

Simple Object Access Protocol (SOAP),
calling web services with, 342–345

single quotes, 9, 11

snap-ins

installing, 450

working with, 226–228

See also specific snap-ins

software, querying with WMI, 408–411

sort command, 57

Sort-Object cmdlet, 57, 62–63

SpellingSuggestion objects, 377

Split-Path cmdlet, 152

SQL wildcard, 281

Start-KeyHandler cmdlet, 456

Start-Process cmdlet, 277, 428–429

Start-Service cmdlet, 282

Start-Transcript cmdlet, 265

static members, accessing, 30

-static switch parameter, 267

statistics, gathering, 65

stdout stream, 171

Stop-KeyHandler cmdlet, 456

Stop-Process cmdlet, 64, 275–278

Stop-Service cmdlet, 282

string conversions, 42–43

string interpolation, 11–12

string literals, 9–11

string operations, 8–14

string operators, productivity boosting,
12–13

String.Replace() method, 14

strings, 8–14

comparing, 35–36

immutable nature of, 2

invoking as expressions, 83–84

numbers as, 16

replacing, 14

types conversions, 28–30

subroutines, 87. See also functions

substrings, replacing, 14

__SUPERCLASS property, 406

Suspend-Service cmdlet, 282

switch statement, 45–48, 66

switches, as comparison operators, 34

symbolic links (symlinks), 423, 429

syntax errors, 169–170

system event logs, 452–454. See also event
logs

system monitoring

with performance counters, 306–313

program monitoring, 309–313

tools for, 297

with Windows event log, 297–305

System namespace prefix, 25

System.ArgumentException object, 174

System.ArgumentNullException object, 175

System.Collection.Hashtable object, 21

System.Diagnostics.EventLog class, 303, 452

System.Diagnostics.PerformanceCounter
object, 307

System.Diagnostics.Process object, 5

System.EventHandler class, 85

System.Globalization.NumberFormatInfo
class, 16

System.Int32 object, 14

System.IO.FileAttributes enumeration, 39, 42

System.Management.Automation class, 70

Deshev_940-3INDEX.fm Page 490 Tuesday, January 29, 2008 7:30 AM

491■I N D E X

System.Management.
Automation.ErrorRecord object, 160

System.Management.Automation.
FunctionInfo object, 88

System.Net.Mail class, 349–350, 363, 365

System.Net.WebClient class, 320–321,
324–326, 345–347

System.Net.WebRequest class, 328–329

System.String object type, 8

System.Web.HttpUtility .NET class, 270

■T
tab completions

handler for, 468–470

support for, 461

See also PowerTab

tab expansion, 418

tab expansion database, 470–471

TabExpansion function, 231–235

table view definitions, 251

TableControl property, 251

Tar archive, 425

TargetObject property, 160

Tee-Object cmdlet, 58, 63–64

terminating errors, 155–157, 172–175

terminator usage, inadvertent, 447

Test-Path cmdlet, 135, 179

Test-Xml cmdlet, 431–432

text

encoding, 289–294

extracting data from, 294–296

parsing between commands, 55–56

text editors, 139

text files, 285

text formatting system, 237

text-based pipelines, 55–56

__THIS special property, 403

$this variable, 238–242

thrashing, 276

throw statement, 174

TIFF images, 436

ToString() method, 288

$total variable, 77

trace function, 103

Trace-Command cmdlet, 193–196

traps, error, 160–168

generic, 164

global, 167–168

nested, 165–166

Trusted Publishers store, 212, 216

Trusted Root Authorities store, 215

Trusted Sites zone, 385

type aliases, 25

type cast operators, 27

type configuration, 245–247

type conversions, 26

built-in rules, 27–30

implicit, 36–37

type extensions, 5–8, 239, 247–251

type literals, 25–30, 402

type system, 1–8, 237

TypeConverter class, 27

types, modifying, 237–247

types.ps1xml file, 244–247

■U
UI-related operations, 220

Unicode Consortium, 294

Unicode encodings, 291–294

Unified Modeling Language (UML), 396

Uniform Resource Locators (URLs), 316,
330–331

UNIX shell compatibility aliases, 119–122

unknown errors, 163–168

Unrestricted policy level, 141

untrappable errors, 169–170

Update-FormatData cmdlet, 250

Update-TypeData cmdlet, 245–247

URLs, 316, 330–331

user profile scripts, 223–225, 350–351

Deshev_940-3INDEX.fm Page 491 Tuesday, January 29, 2008 7:30 AM

492 ■IN D E X

User-Agent header, 322, 323

UTF-8 BOM sequence, 292

UTF-8 encoding, 292

utility applications, 446–448

■V
value comparisons, 34–36

-valueOnly parameter, 79

values, returning, 146–147

variable parameter, 64

variable scope, 77–83, 91

functions and, 94–97

prefix for denoting, 80

setting, 144–145

variables

assigning values to, 79

converting to PSReference, 28

defined, 1

local, 82, 91

modifying, 80

passing to functions, 91–92

scripts and, 144–146

substitution, 11–12

VBA code, 383

VBScript code, 398, 412

verbose messages, 180–183

Verbose parameter, 157, 160

$VerbosePreference variable, 180–181

VeriSign root certificate, 215

vertical tab symbol (`v), 10

view names, 251

views, extending, 249–251

ViewSelectedBy element, 251

Visual Basic for Applications (VBA)
environment, 377, 383

■W
WaitForLoad function, 386

$WarningPreference variable, 186

warnings, generating, 186–187

Web. See World Wide Web

Web browsers, 316, 322

Web pages

accessing password protected, 324–327

checking for broken links, 330–332

downloading, 316–318

downloading content, 427

verifying existence of, 328–329

Web Service Description Language
(WSDL), 338

Web services, calling, 338–344

with HTTP GET requests, 338–340

with HTTP POST requests, 340–342

with SOAP protocol, 342–345

Web Services for Management
(WS-Management), 397

Web sites

opening from within PowerShell, 268

testing and validating, 328–332

Web-Based Enterprise Management
(WBEM), 396–398

WebClient class, 316, 321, 324–326, 345–347

WebRequest class, 328–329

wget, 316

$what parameter, 142

where cmdlet, 57, 436, 444, 457

Where-Object cmdlet, 21, 57, 299

while loops, 48–49, 101

-wildcard operator, 47

wildcards

as file path parameter, 287

matching, 13

in parameters, 257

searching for services using, 281

Win32_LogicalDisk class, 407

Win32_NetworkAdapter object, 411

Win32_NTEventLogFile object, 301

Win32_Process technique, 404

Win32_Product instances, 409

Windows Communications Foundation, 367

Deshev_940-3INDEX.fm Page 492 Tuesday, January 29, 2008 7:30 AM

493■I N D E X

Windows event log, 297–305

reading, 298–302

writing to, 302–305

Windows Event Viewer control panel, 298

Windows Installer, 409–410

Windows Management Instrumentation
(WMI)

class names, 464, 466

event handling, with PSEventing, 454–456

generating code, 411–414

history of, 395–396

infrastructure, 301–302

introduction to, 395

listing classes, 404–406

network configuration queries, 411

PowerShell support for, 398–400

query tool, 399–400

querying hardware devices, 407–408

querying software, 408–411

referencing classes, 402–403

system properties, 406

WBEM and, 396–398

Windows regional settings, 381

Windows Remote Management
(WinRM), 397

Windows Script Host code, interoperability
of, 389–392

Windows-integrated authentication, 324

WMI. See Windows Management
Instrumentation

WMI objects, 3, 395

classes of, 396

converting strings to, 29

converting WQL queries into, 401–402

event retrieval with, 301

language support for, 401–404

WMI Query Language (WQL), 301, 398

Word.Application ProgID, 369

Words collection, 373

Workbook objects, 378

Workbooks collection, 378

Worksheet object, 378

World Wide Web (WWW)

connecting to, through proxy server,
318–327

downloading files from, 316–318

See also Web pages, Web sites

World Wide Web Consortium (W3C), 340

WQL (WMI Query Language), 301, 398

WQL queries, converting to WMI objects, 401

Write-BZip2, 425

Write-Clipboard cmdlet, 439–440

Write-Debug cmdlet, 183–185

WriteEntry() method, 304

Write-Error cmdlet, 175–177, 187, 303

WriteErrorException, 176

Write-Event function, 305

Write-GZip cmdlet, 425

Write-Host cmdlet, 94, 103, 108, 178–180, 221

Write-Verbose cmdlet, 180–183

Write-Warning cmdlet, 186–187, 303

Write-Zip cmdlet, 424

WSDL (Web Service Description
Language), 338

■X
XML documents, converting, 433

XML namespaces, defining, 433

XML tools, 430–434

XML validation, 431–432

XML Web services. See Web services

XmlNodeAdapter, 5

-xor (exclusive or) operator, 38

XPath, 433

X-Receiver header, 353

XSLT transformations, 433–434

■Z
ZIP archive format, 424

Deshev_940-3INDEX.fm Page 493 Tuesday, January 29, 2008 7:30 AM

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Why Another Book on Windows PowerShell?
	What’s in This Book?
	Do I Need Prior Programming Experience?

	Objects and Object Types
	The Extended Type System
	Accessing Object Properties
	Using Object Methods
	Object Adapters
	ManagementObjectAdapter
	DirectoryEntryAdapter
	DataRowAdapter
	DataRowViewAdapter
	XmlNodeAdapter
	ComAdapter

	Type Extensions

	Built-in Types
	Strings and String Operations
	String Literals
	String Interpolation
	Productivity Boosting String Operators
	Regular Expression Matching
	Replacing Strings or Substrings

	Numeric Types
	System.Int32
	Floating Point Numbers
	Decimal Numbers
	Hexadecimal Numbers
	Numbers as Strings

	Arrays and Collections
	Dictionaries and Hash Tables

	Type Literals
	Type Conversion
	How PowerShell Converts Between Types
	Built-in Type Conversion Rules

	Accessing Static Members

	Summary

	Controlling Execution Flow
	Conditional Expressions
	Comparing Values
	Implicit Type Conversions
	Logic and Bitwise Operations
	-and
	-or
	-xor
	-not

	Boolean Conversions
	The Power of String Conversions
	Collections and Conditional Expressions

	Branching Instructions
	Simple Branching: if/else
	Multiple Branches and the switch Statement

	Loops: Repeatedly Executing Blocks of Code
	The Simplest Loop: while
	Loops and Counters: The for Loop
	Executing Actions on All Objects in a Collection: The foreach Loop
	Controlling Loop Execution: break and continue Statements

	Summary

	The Object Pipeline
	Text-Based Pipelines
	Object-Based Pipelines
	Processing Collections Using ForEach-Object
	Filtering Collections Using Where-Object
	Adding or Deleting Properties Using Select-Object
	Sorting Collections
	Pipeline Tees
	Grouping Objects
	Gathering Collection Statistics
	Detecting Changes and Differences Among Objects
	The Object Pipeline and Functional Programming
	Summary

	Working with Script Blocks
	Defining Script Blocks
	Passing Parameters and Returning Values
	Processing Pipeline Input
	Variable Scope

	Invoking Strings as Expressions
	Script Blocks as Delegates
	Summary

	Working with Functions
	Defining Functions
	Function Internals
	Function Parameters
	Passing Parameters by Reference
	Returning Values
	Scoping Rules

	Filters
	Functions and Script Blocks
	Implementing New Control Structures
	Script Blocks as Strategies

	Summary

	Command Aliases
	Working with Aliases
	Creating Aliases
	Get-Alias
	Get-Command
	The Alias Provider

	Modifying Aliases
	Exporting and Importing Aliases

	Aliasing Tips, Techniques, and Pitfalls
	Name Clashes
	Complex Aliases
	Removing Broken Aliases

	Built-in Aliases
	cmd.exe Look-alikes
	UNIX Look-alikes
	Convenience Aliases

	Summary

	Providers
	Enumerating Providers
	Drives
	Drive Scope

	Navigating to Drives
	Provider Capabilities
	Basic Provider Capabilities
	Drive Providers
	Item Providers
	Item Container Providers
	Navigation Providers
	Item Content Providers
	Item Property Providers
	Dynamic Item Property Providers
	Item Security Descriptor Providers

	Summary

	Script Files
	Creating Scripts
	Invoking Scripts
	Passing Parameters
	Returning Values

	Executing PowerShell Scripts from Other Environments
	Developing and Maintaining Script Libraries
	Dot-sourcing as a Means to Include Script Libraries
	The Library Path Problem

	Summary

	Error Handling and Debugging
	Handling Errors
	Common Error-Handling Parameters
	Trapping Errors
	Suppressing Errors and Raising Them Again
	Catching Unknown Errors or All Errors
	Errors That Cannot Be Trapped

	Capturing Nonterminating Errors
	Raising Errors
	Raising Terminating Errors
	Raising Nonterminating Errors

	Debugging Your Code
	Print Debugging
	Generating Verbose Output
	Generating Debug Output
	Generating Warnings
	Controlling Error Output

	Stepping Through Scripts and Breaking Execution
	Simulating Breakpoints

	Tracing Script Execution Details
	Tracing Intrinsic Shell Operations
	Operation-Specific Tracing

	Summary

	Signing Scripts
	How Code Signing Works
	Guaranteeing Script Integrity
	Certifying the Origin of a Script

	Managing Certificates
	Creating a Self-Signed Certificate
	Creating a Certification Authority Certificate
	Issuing a Code-Signing Certificate

	Signing Scripts
	Running Scripts on Other Machines
	Summary

	The Shell Environment and Its Configuration
	Shell Hosts
	User Profile Scripts
	Settings for All Users and All Shells
	Settings for All Users Using a Specific Shell
	Settings for a Specific User and All Shells
	Settings for a Specific User and a Specific Shell

	Working with Saved Console Settings
	Changing the Prompt Settings
	Tab Expansion: How Command Completion Works
	Summary

	Extending the Type System
	Modifying Objects and Types
	Adding Members to Single Objects
	Creating New Objects

	Adding Members to All Instances of a Class

	Extending Object Formatting
	Creating Our Own Views

	Summary

	Getting Help
	The Help System
	The Basics
	Parameter Details
	Advanced Techniques

	Getting Command Information
	Getting Information About Objects
	Using the Internet to Get Help
	Summary

	Taming Processes and Services
	Working with Processes
	Listing Processes: Getting the Big Picture
	Starting and Stopping Processes
	Processes and Their Windows
	Process Modules: On What Libraries Does This Baby Depend?
	Getting Information About a Program’s Publisher
	Setting Process Priority

	Administering Services
	Starting and Stopping Services
	Configuring Services
	Analyzing Service Dependencies

	Summary

	Input and Output
	Reading Content
	Writing Content
	Content Encoding
	Getting Byte Content
	Different Unicode Encodings

	Extracting Data from Text
	Finding Matches for a Regular Expression
	Finding String Occurrences Inside Files

	Summary

	Monitoring Your System
	Working with the Windows Event Log
	Reading from the System Event Logs
	Accessing Remote Event Logs

	Writing to the Event Log

	Performance Counters
	Consuming Counter Data
	Monitoring Programs
	Detecting Memory Leaks
	Detecting Hung Programs
	Detecting Unexpected Program Exits

	Summary

	PowerShell and the World Wide Web
	Laying the Foundation
	Fetching Files from the Web
	Setting Connection Options and Debugging Connection Problems
	Working with Proxy Servers
	Working with Request Headers
	Accessing Resources Requiring Authentication

	Testing and Validating Web Sites
	Test-Url: Verifying a Page’s Existence
	Checking If a Page Contains Broken Links

	Working with News Feeds
	Getting Feeds

	Calling Web Services
	Calling Web Services Using HTTP GET Requests
	Calling Web Services Using HTTP POST Requests
	Calling Web Services Using the SOAP Protocol

	Handling FTP Transactions
	Downloading Files from an FTP Server
	Uploading Files to an FTP Server

	Summary

	Sending E-mail
	Using System.Net.Mail
	Building a Reusable Script
	Configuring Recipients
	Working with Message Headers
	Multipart Messages
	Message Views
	Attaching Files to Messages
	Embedding Media in Messages

	Putting It All Together
	Summary

	Talking to COM Objects
	How COM Works
	How PowerShell Supports COM
	Scripting Programs Through Their COM Interfaces
	Automating Microsoft Word
	Opening Documents and Extracting Text
	Creating and Modifying Documents
	Using Microsoft Word’s Spell Checker
	Getting Help and Going Further

	Scripting Microsoft Excel
	Reading Cell Values from a Document
	Modifying Workbook Content
	Going Further

	Driving Internet Explorer
	Scripting a Browser Session
	Extracting Data from the DOM Tree

	Windows Script Host Code Interoperability
	Evaluating Code
	Exposing Objects from MSScriptControl

	Summary

	Managing Windows with WMI
	A Brief History of WMI
	WBEM and WMI Components
	The Common Information Model
	Network Transport
	Object Discovery

	PowerShell’s WMI Support
	Get-WmiObject: The WMI Query Tool

	Language Support for WMI Objects
	Exploring CIM Classes and Objects
	Getting a List of Classes and Namespaces
	WMI System Properties

	Querying Hardware Devices
	Getting Information About Software
	Operating System Updates
	Installed Programs

	The Network Configuration
	Generating WMI Code
	Scriptomatic

	Summary

	PowerShell Community Extensions
	Installation and Configuration
	Tab Expansion
	Editing Configuration Files
	Getting Help

	File System Utilities
	Navigation Helpers
	NTFS Helpers
	Compressing and Archiving Files

	Network Utilities
	Executing Processes and Commands
	XML Tools
	Working with Image Files
	Clipboard Helpers
	New Providers
	Reading from the .NET Global Assembly Cache
	Exploiting the Internet Explorer Feed Store
	Manipulating Windows Active Directory

	Utility Applications
	Summary

	PSEventing: .NET Events in PowerShell
	Introducing PSEventing
	Event-Handling Mechanics
	FileSystemWatcher: A Real-World Example
	Monitoring Entries Written to the System Event Logs
	Handling WMI Events
	Detecting If Our Script Has Been Terminated by the User
	Using Script Blocks As Event Handlers
	Summary

	Enhancing Tab Completion with PowerTab
	Installation
	How PowerTab Works
	Data Grid Pop-up Windows
	A Useful Utility

	Configuring PowerTab
	The IntelliSense Completion Handler
	Pressing Tab Twice

	The Tab Expansion Database

	Summary

	Index

